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Abstract. In this paper, a method for the estimation of the angle of
grasping of a human forearm, when grasped by a robot with an un-
deractuated gripper, using proprioceptive information only, is presented.
Knowing the angle around the forearm’s axis (i.e. roll angle) is key for the
safe manipulation of the human limb and biomedical sensor placement
among others. The adaptive gripper has two independent underactuated
fingers with two phalanges and a single actuator each. The final joint
position of the gripper provides information related to the shape of the
grasped object without the need for external contact or force sensors.
Regression methods to estimate the roll angle of the grasping have been
trained with forearm grasping information from different humans at each
angular position. The results show that it is possible to accurately es-
timate the rolling angle of the human arm, for trained and unknown
people.

Keywords: pHRI, underactuated gripper, propioceptive sensors, regres-
sion, haptic perception.

1 Introduction

Triage and initial care are crucial for victims in disaster scenarios [10]. These
tasks frequently need safe human limb manipulation. Although visual methods
for the estimation of the location of human limbs provide the coordinates of the
human joints [7], the angle around the forearm axis (roll angle) is not included.
Moreover, the roll of the forearm may change during the grasping process.

Despite the fact that the applications where robots are able to manipulate
people are very interesting for robotics researchers, there are few studies that
consider direct human-robot physical contacts. Most research studies that are re-
lated to physical Human-Robot Interaction (pHRI) consist of control techniques
of teleoperated systems [5], exoskeletons [15], prosthetic parts or rehabilitation
robots [19].
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Fig. 1. Adaptive gripper for grasping angle estimation of human forearm. Propriocep-
tive sensors (angle sensors) are used to estimate the roll-angle, while an IMU is used
as ground-truth to train the estiamtion methods.

Regarding these few pHRI applications, a robot that cleanses human limbs of
disabled people is presented in [13] and a robot that manipulates human limbs
with a non-prenssil actuator and an impedance Model Predictive Control is
presented in [8]. More recent studies have considered the application of artificially
intelligent techniques for robotically assisted dressing but without robot-human
contact [9].

One aspect that has to be addressed in pHRI refers to robotics grippers.
Although multiple ad-hoc end-effectors have been considered in previous pHRI
works [21], it is still necessary to develop grippers or hands that allow the robot to
carry out autonomous and safe grasps [1], with enough robustness and softness
to manipulate human limbs. Some studies about pHRI grippers are based on
the use of Variable Stiffness Actuators (VSA) [17], and the integration of tactile
sensors and deep learning methods in robotic grippers to distinguish contacts
with humans and inert objects is presented in [12].

The use of adaptive or flexible grippers enhance the in-hand manipulation by
reducing the maximum pressure applied over the grasped objects [11]. However,
the precision of this kind of mechanism is lower than in rigid grippers. Other
existing solutions are based on underactuated rigid hands that adapt their shape
over the contact surface. The underactuated and fully rigid PaCome gripper [2],
originally thought for industrial applications, could also be used for pHRI ap-
plications. In [16], OpenHand is presented. It is an hybrid rigid-soft and open
hardware gripper made of 3D printed polylactic acid (PLA) and polyurethane
rubber. In a recent study of the same authors, proprioceptive and tactile in-
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formation are combined to classify grasps with a hybrid underactuated gripper
[18].

In this paper, the problem of human forearm manipulation is addressed. To
face this task, a gripper with two independent underactuated fingers has been
designed and built using additive manufacturing technology. Each finger has two
phalanxes, a single motor and an angle sensor placed in the underactuated joint.
The main contribution of this study is to solely use proprioceptive information
given by angle sensors integrated in the gripper to grasp the distal forearm and
estimate the roll angle using machine learning approaches based on non-linear
regression methods. According to this study, a robot with an underactuated
gripper could grasp a distal forearm and estimate the grasping roll angle using
haptic feedback only, which could open the door to new research lines into safety
human manipulation.

This paper is structured as follows: In section 2 the designed prototype of
the underactuated gripper and its validation is presented. In section 3, the new
method developed for the estimation of the forearm roll angle, based on machine
learning techniques is then described, and the conclusions are shown in section
4.

2 Adaptive Gripper

There are two main approaches for the implementation of the driving mechanism:
tendons and rigid linkages [4]. In this application, the use of tendons (e.g. Yale
OpenHand Model T42), as in [16] has been discarded, because the tendons are
located in the internal side of the fingers, so the contact surfaces of the fingers
tend to pinch the skin of the forearm. Rigid linkages has been used, because they
are located on the back of the finger, leaving a cleaner contact area.

2.1 Kinematics

A gripper with two independent underactuated fingers with two phalanx and
a single actuator has been designed with the kinematics described in Figure 2.
The parameter values, summarised in Table 1, have been designed to adapt to
the shape and size of a human upper-forearm with a perimeter between 15.3 and
18.8 cm.

Table 1. Parameter values of the underactuated finger.

Parameter O1Oa [mm] L0,L1,L2 [mm] a [mm] b [mm] c [mm] d [mm] ψ [◦] width [mm]

Value [16,−20] 40 25 60 20 8 90 15

A mechanical limit makes the distal phalanx angle θ2 always positive. The
actual position of the finger depends on the balance between external forces
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Fig. 2. Kinematics of the underactuated fingers. Each finger is independent, with two
DOF’s (θ1,θ2) and a single actuator θa. A mechanical stop makes θ2 > 0. The actual
position of the finger depends on the external forces f1, f2 and the actuator torque. A
spring ensures contact between the finger pads and external objects

f1, f2 and the actuator torque. The spring ensures contact between the finger
pads and external objects and makes the finger stable when f1 or f2 are 0. The
extension springs are made with 0.6mm� steel wire and a stiffness of 164N/m.

The prototype has been manufactured in PLA plastic in a Prusa MK2 3D-
printer, and its design has been made accessible in a public repository 1.

2.2 Proprioceptive sensing

Analog angle sensors have been placed to measure the distal joint angles θ2 .
The actuators provide feedback on the servo position, so the full position of the
adaptive fingers can be estimated. This way, proprioceptive joint sensors provide
information about the final gripper position that is related to the shape and size
of the grasped object, without the need of external contact or force sensors.

Miniature potentiometers from muRata (model SV01 10kΩ linear) have been
used successfully for the measurement of the distal joints of both fingers (θ2l,θ2r).
The analog signals are measured using a micro-controller with 10-bits ADC,
(0.26◦ resolution) at a rate of 50Hz.

The Dynamixel MX-28 servos have a magnetic encoder with 12-bits (0.088◦

resolution) at a rate of up-to 50Hz with our current set-up. They provide feed-
back of the servo positions θal and θar.

1 /github.com/TaISLab/umahand
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2.3 Grasping forces

The forces at the center of the phalanxes contact areas in an underactuated
gripper depend also on the joint values. Moreover the spring stiffness [3] is also
in the equation.

f = J−TT−T t (1)

Where f are the contact forces, J−T is the inverse of the transposed Jacobian
matrix that relates the finger joint velocities to the speed of the contact points,
and T is the transfer matrix, that relates the velocities of the actuators to the
joint velocities. Both matrices depend on the joints and actuator positions [4].
However, for a position of the gripper given (θ1 and θ2 remains constant), the
magnitude of the closing force of each finger (f1 + f2) is proportional to the ac-
tuator torque θa. Closing forces have been experimentally measured for different
actuator torques at the same grasping position. With a maximum stall torque
for each of the Dynamixel MX-28 servos of 2.5 Nm, the effective closing forces
for each finger range from 4.9 N (20%) to 27.4 N (100%).

2.4 Getting ground-truth data

In order to obtain the ground-truth angular measurement of the human forearm,
a device that includes an accelerometer has been implemented. The device is held
by the volunteers with their hand during the experiments. As the attitude of the
robot gripper is known, the relative rolling angle of the human forearm with
respect the gripper can be obtained and used as a reference data for training
and performance evaluation of estimation methods.

3 Forearm roll angle Estimation

The proposed method is based on the differences in the final grasping positions
of the finger joints when grasping a human forearm, thanks to the internal bone
structure, as seen in Figure 3. The human forearm is supported by Ulna and
Radius, which specially at the upper section of the forearm (near the wrist)
provide an elliptical shape. The roll angle is measured with respect to the pose
in which Ulna and Radius are parallel to the gripper base.

3.1 Measurements

During the measurements, the volunteer subject holds a 3D printed handle which
integrates the accelerometer, while the gripper closes repeatedly around their
forearm. The subject has to rotate the forearm in each iteration, so that the
accelerometer measures this new angle, which corresponds to the roll angle. The
whole gripper has been mounted on a square frame to perform experiments in
different positions . The actual roll angle is computed as the orientation difference
between the gripper and the readings from the inertial sensor bar. This process
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Fig. 3. Cross section of a human upper forearm grasped by the underactuated gripper,
showing the variations in the passive (θ2l,θ2r) and active (θal,θar) DOF’s, based on the
roll grasping-angle (Φ).

is shown in Figure 4, where the arm angle and joint values are recorded for a
sequence of six grasps.

Performing many different grasps at different angles, the relationship between
the gripper joints and the roll can be obtained. In Figure 5, the data of 36 grasps,
measured at different roll angles, on the left arm of a volunteer with a perimeter
of 17.9 cm, is shown.

3.2 Machine-learning regression methods

Regression methods have been implemented due to To estimate the roll angle (φ),
three machine learning approaches based on non-linear regression methods are
used to obtain three models: Gaussian Process Regression (GPR) [20], Regression
Tree (RT) [6] and Bagging Regression Tree (BRT) [14]. These models receive the
4-input angles (θar, θal, θ2r, θ2l) and predict φ.

All these models are trained in a large dataset. In the training process, fea-
tures are composed by sets of (θar, θal, θ2r, θ2l), while expected responses com-
posed by φ are measured with the accelerometer for each set of features. A
cross-validation has also been included during the training process to prevent
overfitting.

The training and evaluation processes have been carried out using Matlab
R2018b, the Statistics and Machine Learning Toolbox and the Regression Learner
application. The code and datasets have been made available in the repository
referred in section 2.

The training process have been carried out using the Parallel Computing
Toolbox in a 4-core Intel i7-7700HQ CPU @ 2.80 GHz.



Human-Arm Roll Estimation 7

5◦ 35◦ 55◦

90◦ 120◦ 140◦

5 10 15 20 25 30 35 40

Time [s]

0

20

40

60

80

100

120

140

160

180

Jo
in

t a
ng

le
s 

[º
]

a
r

a
l

2
r

2
l

Fig. 4. Sequence of 6 grasps with different roll angles during the data collection process
of one volunteer (top). Motors, joints and roll angle positions during the data collection
process (bottom). Note that in this graph the open-and-close process is repeated each
6 s.
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Fig. 5. Joint values for 36 grasps, measured at different angles, on the left arm of a
volunteer with a perimeter of 17.9 cm, against the roll angle.

3.3 Data collection

During this process, a User Interface developed in Matlab shows goals and cur-
rent angles so that the subject could rotate their forearm until goal and actual
angle match. In each step, the gripper opens and closes, so while the gripper is
closed, (θar, θal, θ2r, θ2l) and (φ) values are collected.

There are two types of data collection processes which have been performed:
sequential and random. In the sequential process, the subject is asked to rotate
their arm in steps of 5◦. In the latter, the goal angle is set randomly.

Following this process, two data-sets have been collected: the first dataset
contains information of a single subject, while the second dataset contains infor-
mation of five subjects. To train and test the models, each dataset is split into
training and test sets respectively. Therefore, training and test data are different,
even if they have been collected from the same person.

The dataset collected from one subject contains an amount of 555 sets of
(θar, θal, θ2r, θ2l) and (φ), while the dataset collected from 5 subjects is composed
by 2775 sets of data.

3.4 Results

Three experiments have been carried out to measure the performance of the
regression models estimating the roll angle:

1. Single-known: Training and test sets contain data from one subject.
2. Multiple-known: Training and test sets contain data from four subjects.
3. Multiple-unknown: Training set contains data from four subjects and test

set contains data from a fifth subject which is not used to train the models.
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In the single-known experiment, machine learning models have been trained with
data from a single volunteer and have tested with different data from the same
subject. The results of this experiment are shown in Fig. 6. This figure shows
the good performance of the regression models, with an almost negligible error,
and the best results obtained by GPR.
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Fig. 6. Regression errors results of non-trained data of a known subject when models
are trained in this subject dataset only.

In the multiple-known experiment, machine learning methods have been
trained with data from 4 volunteers and have been tested with different data
from one of these 4 subjects. In this case, predictions from RT and BRT include
a pair of outliers, however the GPR model still presents a good performance as
can be seen in Fig. 7.

In the multiple-unknown experiment, regression models have been trained
with data from 4 subjects and tested with completely new data from a fifth
volunteer that had not been used in the training process. Results of this exper-
iment are presented in Fig 8 and show that RT and BRT are more robust that
GPR because they generalize better, and the outliers predicted in the previous
experiment vanish.

Results are summarized in Table 2. The Maximum Erorr (ME) and Mean
Absolute Error (MAE) from each model in each experiment are represented in
degrees. As is commented before, GPR obtains the best results when the subject
is known, with a MAE of 3.77◦ in the case of a single user and 8.68◦ in the case
of multiple subjects. However, for the third experiment, the best results are
achieved by the RT model with a MAE of 9.86◦ since this model generalizes
better than the others. The maximum error shows the outliers in experiments
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Fig. 7. Regression errors results of non-trained data of a known subject when models
are trained in a dataset obtained from 4 volunteers.
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Fig. 8. Regression errors results of non-trained data of an unknown user when models
are trained in a dataset obtained from 4 people.

Table 2. Summary of the errors of the regression models in degrees

Single-known Multiple-known Multiple-unknown

Models ME MAE ME MAE ME MAE

GPR 9.24 3.77 18.89 8.68 45.79 15.09
RT 12.20 4.33 74.94 17.17 24.22 9.86
BRT 10.19 5.66 32.94 13.95 22.61 10.73
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4 Conclusions

With this method, new applications of robot-initiated pHRI can be developed
without the need of external force/tactile sensors that are expensive or hard to
deploy and maintain. These applications may include assistive, rescue or surgical
robotics. With this approach, information on the location of the human limbs
can be enhanced without the need of additional sensors. In pHRI applications,
an accurate location of the human forearm is important not only for a safe
human arm manipulation, but also for the placement of biomedical devices such
as heart-rate or glucose sensors.

The results demonstrate the good performance of the regression methods
used in this application. The errors obtained denote these predictors can be
used for pHRI applications. However, in future works, a larger dataset, and a
greater number of volunteers may be considered, as well as the use of other
prediction methods as deep learning.

Future works after this method may include forearm width estimation for
the recognition of people, quality of grasping estimation and skin compliance
identification for health evaluation.
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