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Abstract— This paper describes the use of two artificial
intelligence methods for object recognition via pressure images
from a high-resolution tactile sensor. Both methods follow the
same procedure of feature extraction and posterior classification
based on a supervised Supported Vector Machine (SVM). The
two approaches differ on how features are extracted: while
the first one uses the Speeded-Up Robust Features (SURF)
descriptor, the other one employs a pre-trained Deep Con-
volutional Neural Network (DCNN). Besides, this work shows
its application to object recognition for rescue robotics, by
distinguishing between different body parts and inert objects.
The performance analysis of the proposed methods is carried
out with an experiment with 5-class non-human and 3-class
human classification, providing a comparison in terms of
accuracy and computational load. Finally, it is discussed how
feature-extraction based on SURF can be obtained up to five
times faster compared to DCNN. On the other hand, the
accuracy achieved using DCNN-based feature extraction can
be 11.67% superior to SURF.

Kewywords— Tactile sensors, Object recognition, Rescue
robotics, Machine learning

I. INTRODUCTION

Touch sense is critical for humans. We use the sense
of touch to perform complexes tasks such as recognising
objects. To perform this task, human beings need two abili-
ties: first, being able to extract information through touch,
and second, having cognitive capabilities to process this
information [1]. As current trends in robotics are focusing
on providing intelligence to robots and making them more
similar to humans, tactile sensing in field robotics, is a key
problem [2]. The resurgence of artificial intelligence (AI)
methods is a great help for interpreting the information
acquired. Recent applications propose the use of a tactile
sensor to extract information from the object touched and
a learning process that use this information to distinguish
familiar objects among the collected data [3].

In the literature, a broad variety of works related to object
classification can be found, although it is complex to provide
a fair comparison between the different approaches, given
the differences on the applied hardware [4]. The use of
Deep Learning with dropout to reduce overfitting is presented
in [5]. This work also describes the benefits of including
both kinesthetic and tactile information to object shape
recognition, and raises the differences between using planar
or curved tactile sensors.

Most of the studies related to object classification are
based on the same two steps: feature extraction from pressure
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Fig. 1: The end-tactile-effector (a) and the implementation
on the robotic manipulator AUBO Our-i5 (b).

images and obtaining a classifier based on those features [6].
An existing solution uses a variant of the Scale Invariant
Feature Transform (SIFT) descriptor as a feature extractor
and a supervised k-Nearest Neighbour (kNN) algorithm to
get the classifier [7]. A recent work from the same authors
proposes a novel algorithm which synthesizes both kines-
thetic of 3D positions of the contact and tactile information
forming a 4D point cloud of the object [8]. All these works
generally present methods for object recognition. However,
these methods have not been used in real applications, except
those works that use tactile information for grasping objects
[9]–[11].

The use of tactile information for object recognition is
essential while searching for victims in first-response and
disaster scenarios. In such situations, teleoperation and haptic
perception is crucial due to the complexity of the operations
[12] and the lack of visual perception in low-light scenarios
or in presence of smoke or dust [13].

This paper present two contributions. In one hand, we
describe two methods for recognising objects through pres-
sure images. The first method uses the Speeded-Up Robust
Features (SURF) [14] as a feature extractor, whilst the
second method uses the Deep Convolutional Neural Network
(AlexNet) [15]. Then, both methods include a Supported
Vector Machine (SVM) [16] to get a classifier. Furthermore
we compare both methods results in terms of accuracy and
computation time. On the other hand, we propose a real ap-
plication of tactile sensors and object recognition to the field
of rescue robotics. An experiment for testing the performance
of the methods is carried out under controller conditions.
Fig. 1 presents the used hardware and its accession to the
robot. The test demonstrates the capability of the system to



recognize not only inert objects, but certain humans parts of
the body, with the aim to identify potential victims in disaster
scenarios.

II. METHODS

In this paper, the use of two methods to classify pressure
images is presented. Both methods implement the classifi-
cation structure in two steps: extract features and train a
classifier.

The first method is based on SURF descriptor. Its work-
flow is illustrated in Fig. 2. This method needs to include
an intermediate step between the features extraction and
the supervised learning. As in [17], a k-means unsupervised
algorithm is implemented to cluster features into a dictionary,
generating a framework of Bag of Words (BoW). Then, a
supervised SVM is trained to generate a classifier.
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Fig. 2: Method 1: Features extraction with SURF, clustering
with k-means and BoW, and classification with SVM.

The second method implements a DCNN to extract fea-
tures. This procedure, previously presented in [18], consists
of using a pre-trained network to classify conventional
images taking with a camera. Activations of the last layer
before the classification are used to describe features. After
that, a supervised SVM is trained to get a classifier. The
implementation scheme can be seen in figure 3.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

A high-resolution tactile sensor has been attached to the
6 DOF robotic arm AUBO Our-i5. The Tekscan pressure
mapping sensor 6077 is conformed by 1400 resistive sensels
of pressure distributed on 28 rows and 50 columns with a
size of 53.3 mm x 95.3 mm. The sensor is covered by a
silicone rubber as a contact interface, protecting the device
while conducting external forces.

Unlike related works, a single touch is used to classify
new images. However, considering that the area of the sensor
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Fig. 3: Method 2: Features extraction with AlexNet and
classification with SVM.

may be smaller than the surface of the objects, the most
representative portion of the objects has to be touched. A
total of 400 pressure images have been used to feed each
method. These images are divided into eight classes labelled
as: Finger, Hand, Arm, Pen, Scissors, Pliers, Sticky Tape,
and Allen Key. The same set of images has been employed
to evaluate both methods. The training set is composed by
160 images, 20 images for each label, whilst the test set is
composed by 240, 30 images for each label.

B. Results

Figures 4 and 5 show the confusion matrix obtained by
applying the methods. The classification accuracy achieved
with the SURF-based is 80% whilst with the DCNN-based
is 91.67%, that is, DCNN-based presents an improvement
of 11.67% of accuracy with respect to the SURF-based.
However, the computation time to classify a new image is
around 0.01s in SURF-based in contrast with the 0.7s of the
DCNN-based. A summary of the results can be seen in table
I.
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Fig. 4: Confusion matrix of the SURF-based method.
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Fig. 5: Confusion matrix of the DCNN-based method.

TABLE I: Summary of results

Method Accuracy (%) Improvement (%) Time (s)
SURF + SVM 80 - 0.01
CNN + SVM 91.67 11.67 0.7

IV. CONCLUSIONS AND FUTURE WORK
Two methods for object recognition using pressure im-

ages obtained by a high-resolution tactile sensor have been
described. These methods have the same structure based on a
features extractor from the pressure images, and a supervised
learning algorithm to get a classifier. To extract features,
the first method implements a SURF descriptor, whilst the
second uses a pre-trained DCNN. Then, a SVM for each
method was trained to get a classifier with the aim to label
each image in a pre-determined class. An object recognition
application to the field of rescue robotics was also presented.
This application consists on classify, using only one touch,
inert objects along with humans parts of the body. An
experiment with 5-class object and 3-class human parts of
the body classification has been carried out to compare
both methods in terms of accuracy and computation time.
The results show that DCNN-based method has achieved an
11.67% improvement with respect to the method 1, however,
the computational time was 0.7s in the method 2 opposite
to 0.01s in the method 1. Although the computation time
provided shall not be a conclusive evidence, it sheds light
on the computational load ratio between methods. Thus,
it is demonstrated that the presented methods are valid to
classify and distinguish humans parts of the body of inert
objects. In future work, we aim to compare our results with
existing solutions, and to take advantages of using combined
tactile and kinesthetic information. Also, other sensors will
be integrated to extract additional information of the state of
the victim.
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