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Abstract— A new robotic system for Search And Rescue
(SAR) operations based on the automatic wristband place-
ment on the victims’ arm, which may provide identification,
beaconing and remote sensor readings for continuous health
monitoring. This paper focuses on the development of the
automatic target localization and the device placement using
an unmanned aerial manipulator. The automatic wrist detection
and localization system uses an RGB-D camera and a convolu-
tional neural network based on the region faster method (Faster
R-CNN). A lightweight parallel delta manipulator with a large
workspace has been built, and a new design of a wristband
in the form of a passive detachable gripper, is presented,
which under contact, automatically attaches to the human,
while disengages from the manipulator. A new trajectory
planning method has been used to minimize the torques caused
by the external forces during contact, which cause attitude
perturbations. Experiments have been done to evaluate the
machine learning method for detection and location, and for
the assessment of the performance of the trajectory planning
method. The results show how the VGG-16 neural network
provides a detection accuracy of 67.99%. Moreover, simulation
experiments have been done to show that the new trajectories
minimize the perturbations to the aerial platform.

I. INTRODUCTION

First response teams play a crucial role when natural or
man-made disasters occur. Specific preparedness are specially
important to reduce the damage caused by these events.
However, when disasters arise suddenly is difficult to elaborate
an actuation plan for minimizing the harm [1]. Therefore,
most common response to these types of incidents are usually
addressed by rescuing victims and transferring them to a
hospital. In these Search And Rescue (SAR) operations, a
rapidly search and triage of the victims is the main goal.

Dealing with the monitoring of a large number of casualties
is key to an effective response in disaster situations. First
responders have to rapidly triage injured in a coordinated
manner to prevent the overwhelming of the emergency field
and hospital staff [2]. As the conditions of the victims change
over time, remote monitoring methods are helpful. In [3] a
vital signs sensor that straps to the victim’s chest has been
proposed, that collect several vital signs, including respiratory
activity.

With the use of robots, localization an continuous mon-
itoring is possible by attaching sensors to the victims for
identification and status assessment. In [4], a sensorized drone
can reach the victim providing a quick evaluation of the

victim’s status to help rescue services. In [5] a robotic sensor
has been attached to a victim that allow remote echography.
Also, robots with two-way multimedia communication, for
the interaction with trapped victims, have been developed
[6]. However, these solutions keep the robot busy during
the monitoring, so for massive disaster scenarios, a more
distributed solution is needed.

Fig. 1. Aerial manipulator based on a commercial ATyges octocopter with
an extended landing gear and a delta manipulator with large workspace.

Unmanned Aerial Vehicles (UAVs) are becoming common
in SAR robotic teams. They are capable of carrying out
increasingly complex missions with high levels of autonomy
[7]. The resurgence of artificial intelligence, specially deep
learning-based techniques, is providing powerful tools for
SAR operations [8]. In [9], a machine learning method is
trained using positive and negative images of human bodies
to locate victims from UAVs. Also, the popularity of RGB-D
cameras help robots to localize and detect objects [10].

An aerial manipulator combines the advantages of UAVs
with the versatility of manipulators as a single device. They
range from conventional serial manipulators [11] to parallel
manipulators (as in Figure 1) which take advantage of limited
center of mass displacements [12] and even with the combina-
tion of multiple multi-rotors [13] for increased manipulability.
The compliant interaction with the environment in aerial
manipulators is a current research topic, not only with single
[14] but also with dual arms [15], [16]. The design of aerial
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Fig. 2. Summary of the wristband placement task. a) Detection: an RGB-D camera and a Machine Learning method provides Cartesian target coordinates.
b) Approach: Motion along a radial trajectory towards the target position. The gripper automatically closes around the human arm and detaches form the
manipulator. c) Depart: The aerial manipulator moves away form the human.

manipulators for autonomous human interaction SAR must
solve the problems of the intelligent perception and safe
actuation, keeping the humans – and their limbs – away from
the propellers of the aerial platform. This way, a manipulator
with extended workspace is needed and the physical Human-
Robot Interaction (pHRI) minimized as in [17], where a
simple contact drone-wall compliance is studied.

The presented work is based on the development of an
aerial manipulators for autonomous wristband placement
in victims, that could send useful information for SAR
operations. The system uses Machine Learning methods to
detect an locate human wrists, and a parallel manipulator with
an special trajectory generation method that minimizes the
effects of the contact reaction forces. The pHRI is kept to a
short contact operation, thanks to an automatically detachable
gripper (wristband). After the contact, the aerial manipulator
is dismissed, and can be used again with another victim. The
main contribution of this paper is the implementation and
evaluation of methods for robotic autonomous operation in
SAR robots, that include: the application of the Faster R-
CNN method for the visual localization of human wrists with
an RGB-D camera; the design of a new device, deployable
from UAVs that can carry human monitoring senors; and a
trajectory generation method for a parallel manipulator that
minimizes the effects of the contact reaction forces.

This paper is structured as follows: Section II describes
the proposed task and the components of the robotic system.
Section III presents the method for the automatic human
wrists detection and localization. In section IV, the trajectory
generation method is presented. The experiments and results
are included in section V, and finally, section VI offers the
conclusions.

II. SYSTEM DESCRIPTION

A. Wristband Placement Task

The wristband placement task can be summarized as shown
in Figure 2 as three main stages:

1) Detection: The human wrist is detected and located
inside the visual area of the RGB-D camera, providing

the Cartesian coordinates of the target (human wrist)
if found (Figure 2a).

2) Approach: The manipulator then moves from the resting
position to the target position along a suitable trajectory,
with a fast motion profile. The contact force activates
a gripper detaching mechanism (Figure 2b).

3) Depart: The aerial manipulator is free. It moves away
from the human, and a the manipulator gets back to
landing position with a slow motion profile (Figure 2c).

Next, the wristband may provide different functions like
beaconing, identification, and remote sensor reading for
vital signs monitoring (Pulse rate, blood oxygen perfusion,
temperature, accelerometer, ...) but it is not in the scope of
this work.

This autonomous operation is part of a SAR mission,
where the exploration and human body location tasks can be
performed in teleoperated or autonomous manner by other
team members.

B. The Detachable Gripper

The wristband has been designed and built in the form of
a double effect detachable gripper, as can be seen in Figure3.
The gripper is passive (doesn’t require power) and uses an
extension spring to keep the mechanism in one of the two
stable states. A prototype has been built using 3D printing
an the design has been made available on-line 1.

This device acts as a carrier for the desired monitoring
electronics that can be battery powered. When the wristband
(gripper) has been attached, the aerial manipulator sends the
GPS coordinates and the device number to the mission control
system.

C. Multi-Copter

A heavy duty Drone from ATyges (Málaga, Spain) has
been chosen as the aerial platform. Weights 8.4kg plus 1.2kg
of batteries, and has about 30 minutes of flying time. The
landing gear has been enlarged to accommodate the delta
manipulator, as can be seen in Figure 1.

1https://www.thingiverse.com/thing:2996502



Fig. 3. The passive detachable gripper showing the approximation (left),
the contact (middle) and the release (right) stages on a dummy’s wrist.

D. Parallel Manipulator

A delta-type parallel manipulator has been built. With just
three degrees of freedom and parallel structure it keeps the
center of mass near the base. To make it lightweight, carbon
fiber tubing for the links, and XT-CF20 (Nylon with 20%
of Carbon Fiber) 3D printing material has been used for the
joints. Off-the-shelf plastic bearings and ABS has been used
for other parts.

The manipulator weight 1.15kg (including motors), its
workspace is a cone of about 1.1m high and is driven with
three smart actuators Dynamixel MX-64R from Robotis, with
integrated PID controller.

E. Electronics

The main on-board computing hardware in the system is
an embedded computer UP-Board (Intel) with Quad Core
x86, 64 bit architecture running Linux OS. A USB Wireless
stick has been used for development, and a serial to USB
interface for the Dynamixel servos have been added.

To power the computer and servos from the main drone
batteries, two 5A DC-DC converters have been used.

F. Software

The control software has been implemented in ROS2 to
facilitate the integration and communication between the
different modules. ROS Modules for the RGB-D camera and
point cloud handling have been obtained. The Faster R-CNN
has been developped in the Caffe Framework. The rest of the
software has been programmed using the Python language.

III. HUMAN WRIST LOCALIZATION

A deep learning method has been implemented for the
image-based wrist detection. The layout of the method is
presented in Fig. 4. First of all, from a sequence of images
taken by the RGB-D camera, each RGB image I (256 ×
256 × 3) is the input for the Faster R-CNN. This network
gives the region coordinates in pixels with respect to the
reference system of the image plane [xc0 , yc0 , xc1 , yc1 ] and
the accuracy estimation of the object classification L.

Then, the depth map D taken by the RGB-D camera along
I is used by the Point Cloud Library (PCL) to generate a

2http://www.ros.org/

Point Cloud P of the scene which is used to obtain the goal
position [x, y, z]. Finally, the goal position and the class score
are published in a 4-component vector [x, y, z,L].

A. Faster R-CNN

Faster R-CNN [18] is one of the most important con-
tributions to the current state-of-the-art in object detection
networks. This method consists of a deep neural network
for both object classification and detection from images. The
primarily objective of that work was to share computation
with the Fast R-CNN object detection network [19], which
was conceived from the original R-CNN [20]. That way, a
Region Proposal Network (RPN) was introduced in Faster
R-CNN. The RPN takes the feature map F as an input and
outputs a set of rectangular images proposals with different
shapes and sizes, commonly called boxes or Regions Of
Interests (ROIs), and the classification score of the object
presented in each region.

In this application the Faster R-CNN with the VGG-16
[21] has been implemented. The architecture of the network
is presented in Fig. 4 within the discontinuous line frame.
The first convolutional layers of the VGG-16 network outputs
F from I. Then, F is used by the RPN to obtain the ROIs.
Finally, after the ROI pooling layer two fully connected
layers (fc6 and fc7) output the box coordinates and the
classification scores which are converted into probabilities L
passing through a softmax layer.

B. Dataset

To train and test the proposed method, a dataset formed
by 5517 samples of RGB images has been used, where 5117
regions of interest around human wrists have been detected
and located in each image. The dataset has been obtained
from Hand Dataset [22]. From this database, a wrist-specific
dataset has been created using the Training Image Labeler
tool from the Image Processing and Computer Vision Matlab
Toolbox. Fig. 5 shows four images of the custom-made dataset
where the ROI around the wrist is highlighted in red. The
dataset is split out in the training and test set. The training
set includes 4205 samples of RGB images with human wrists,
whereas the test set has 1312 samples (912 with human wrists
and 400 without human wrists).

C. Training

In order to minimize the training time of the network, a
transfer learning approach has been followed using a pre-
trained VGG-16 CNN, taking advantage of the fact that the
convolutional layers of learns to extract features from images.
The remainders layers of the Faster R-CNN network are
trained for four days following the exponential decay policy,
which consists of reducing the learning rate by steps according
to (1).

εn = ε0 · γ(n/ξ) (1)

Where εn is the learning rate at the iteration n, ε0 is
the initial learning rate (ε0 = 0.001), γ is the reduction
parameter of the learning rate (γ = 0.1) and ξ is the step
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Fig. 4. Illustration of the human wrist localization algorithm. Faster R-CNN VGG-16 outputs L and [xc0 , yc0 , xc1 , yc1 ] form I, while P , generated with
the PCL, and the box coordinates are used to compute the 3D coordinates of the goal position.

Fig. 5. Four images from the custom-made dataset used both for training
and test the method.

size (ξ = 5 · 104). On the other hand, the momentum (µ) has
been set to 0.9. This parameters are normally chosen with
similar values in other research studies [23], [24].

D. Cartesian 3D coordinates computation

After detecting a wrist in the scene, it is necessary to
compute the 3D coordinates of the goal position. Taking
advantage of the depth information provided by the RGB-D
camera, this task can be carried out easily.

The PCL is used to generate P from the RGB-D data. P
contains the information of the 3D cartesian coordinates in
meters with respect to the reference system of the camera
and RGB values for each pixel of the 2D I. Thus, giving a
target pixel (Tc) from I, the 3D coordinates are computed
using P . Tc is calculated as the middle pixel of the ROI with
(2).

Tc =
[
xc1 − xc0

2
,
yc1 − yc0

2

]
(2)

To determine the target position with respect to the
reference system of the aerial manipulator, an homogeneous
transformation that relates the reference system of the camera
and the reference system of the manipulator is applied.

IV. TRAJECTORY PLANING

A new method has been designed to minimize the effects
of the interaction forces on the aerial manipulator at the
second stage of the wristband placement task (See Figure
2b). Reaction forces at the contact point are converted into
forces and torques around the center of mass of the aerial
manipulator. Force produce displacement disturbances to the
flight control, in opposite direction to the human. In the other
hand, torque produce attitude disturbances, which poses a
stability problem in the proximity of a human. If the reaction
force at the contact point is aligned with the center of mass,
the torques are zero. Considering that the direction of the
reaction force depends on the direction of the contact motion,
the use of approach trajectories radial with respect to the
instantaneous center of mass produces a safer and controllable
disturbance.

A. Center of Mass Computation

To compute the center of mass of the entire system, the
center of mass of the parallel manipulator and the UAV are
computed separately. Equation (3) shows the expression for
the center of mass of the parallel manipulator CMm, which
is needed to get the center of mass of the whole system CM
as in (4).

CMm =

3∑
i=1

(−→r ai ·ma +−→r ei ·me +−→r fi ·mf ) (3)

CM =
CMm +−→r h ·mh +−→r b ·mb +−→r d ·md

3 (ma +me +mf ) +me +mb +md
(4)

Where −→r ai
, −→r ei , −→r fi , −→r e, −→r b and −→r d are the cartesian

positions of the center of mass of each arm, elbow, forearm,
end effector, base and UAV respectively. And ma, me, mf ,
mh, mb and md are the masses of the arm, elbow, forearm,
end effector, the base and the UAV respectively.



B. Trajectory Generation

Two paths are proposed for every displacement to the target
point. The manipulator initial position P Inter, is assumed
in an horizontal reference plane near the center of mass.
Then, a second point is calculated in the reference plane that
aligns the center of mass with the goal position and a path
is generated that adapts the end effector to the next path
from that point. Next, an extension path of the manipulator is
generated from the previous point to the goal position radially
to the instantaneous center of mass. Both paths are defined
by a linear interpolation of N points, for which the center
of mass is evaluated, to ensure that the path is radial at the
moment of the contact, as follows:

Algorithm 1 Calculation of the center of mass
for i= 1 to N do

Q[i]= InverseKinematics(X[i])
CM= CenterofMass(Q(i))
P Inter= Intersection(CM, Ref Plane, X[i])
X[i+1]= NextPoint(P Inter, X[i], N-1)

end for

To find the initial point of the contact path, a method
of successive approximations is used, foreseeing possible
displacements of the center of mass of the aerial manipulator:

Algorithm 2 Trajectory generation
P Inter=Intersection(CM, Ref Plane, Goal X)
while P Inter != X do

X= P Inter
Q= InverseKinematics(X)
CM= CenterofMass(Q[i])
P Inter= Intersection(CM, Ref Plane, Goal X)

end while

Finally, the Cartesian trajectory is sent to the real-time
motion controller that sends joint references to the servos in
sequence.

V. EXPERIMENTS AND RESULTS

A. Wrist Localization

To measure the human wrists detection accuracy of the
network, an experiment with 1312 samples of RGB images,
including 912 with wrists and 400 without wrists, has been
carried out. This experiment shows the performance of the
network detecting the presence of a wrist when it is present
in the scene and detecting the lack of wrists present in a
scene where no wrist is present. Cases in which a wrist is
present in an image and the network detects it, or if there is
no wrist in the image and the network does not detect it, are
considered successful.

The experiment results are shown in Table I. The results
exhibit an accuracy of 57.13% detecting wrists when they
are in the images, and an accuracy of 92.75% when there
are no wrists in the images with different backgrounds and
lighting conditions. The Average Precision (AP) measures the

TABLE I
WRIST DETECTION EXPERIMENTS

Wrist detected No wrist detected

Wrist presented 521(57.13%) 391(42.87%)
No wrist presented 29(7.25%) 371(92.75%)
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Fig. 6. Class score achieved in each frame of the sequence of images after
passing through the Faster R-CNN.

average of the positives cases. That way, an AP of 67.99%
has been achieved by the detection method.

Moreover, an experiment to evaluate the performance of
the localization method has been carried out. A sequence
of images with 12 frames has been considered. A human
wrist is present in every frame. Fig. 6 shows the class score
achieved in each frame after passing through the Faster R-
CNN VGG-16. The first 8 images of the sequence is shown
in Fig. 7, where the ROI and the achieved class score are also
highlighted. On the other hand, Fig. 8 presents two images
where a human wrist is present in different positions. The
4-component vector on the images corresponds the output
given by the localization method that contains the position
and the class score.

B. Detachable Gripper Experiments

A prototype of the detachable gripper has been built and a
video of the wristband placement experiments has been made
available on-line 3 to show the operation of this new device.
The device worked as expected.

C. Trajectory Planning

A dynamic simulation of the aerial manipulator has been
implemented to evaluate the effects of the load and external
reaction forces over the center of the aerial platform, using
the new radial trajectory generation method, and non-radial
trajectories.

The experiment in Figure 9, shows that the use of an
arbitrary approaching trajectory, creates disturbances in the
form of forces and torques around the center of mass. On
the other hand, The experiment in Figure 10, shows that the
use of a trajectory radial to the center of mass, as expected,
minimizes the torques at the platform.

3https://youtu.be/dMuaDy22YuU



Fig. 7. Frames 1 to 8 (from left to right and top to bottom) of the sequence of images used for the wrist detection experiment. In each frame, a class score
L > 90% is achieved.

Fig. 8. Localization of the wrist in two different positions, showing the
pose obtained with respect to the reference system of the camera and the
class score in the detection vector [x, y, z,L]. Note that in both pictures
L > 90%.

VI. CONCLUSIONS

In this paper, a new system for the autonomous wrist
placement using an aerial manipulator, with applications to
SAR operations has been presented. A new task has been
defined in which the UAV autonomously places a wristband
on the victims, with a new design that automatically transfers
between the manipulator and the human arm. This wristband
can be used as a carrier for other equipments, opening the
door to many new remote monitoring applications. A machine
learning method has been successfully applied, and evaluated
in the autonomous detection and localization of human wrists,
based on the Faster R-CNN. Experiments to test the detection
accuracy of the network has been carried out, showing an
AP of 67.99%. A new trajectory planning method for aerial
manipulators that minimizes the effects produced by the
contact reaction forces on the flight control has been presented.
The results of the experiments have shown that with the new
method, the dynamic effects of the environment compliance
are minimized providing a safer and stable control of the
UAV.

Fig. 9. Dynamic simulation of the effects of external reaction forces
measured at the center of the aerial platform, with a no radial trajectory.
External forces are applied for 0.1s in the opposite direction to the end
effector speed, showing high-torque perturbations.

ACKNOWLEDGMENT

This work was funded by the Spanish project DPI2015-
65186-R , the European Commission under grant agreement
BES-2016-078237 and the University of Malaga.

REFERENCES

[1] Ciro Ugarte, Jacobo A. Tieffenberg, Ribka Amsalu, Lou E. Romig,
and Tien T. Vu. Planning and triage in the disaster scenario. American
Academy of Pediatrics, Pediatric Education in Disasters Manual,
Mocule 3.

[2] Eric Frykberg and Joseph Tepas. Terrorist bombings. lessons learned
from belfast to beirut. Annals of surgery, 208(5):569, 1988.

[3] G. C. Pallis, N. Ferreira, L. Hildebrand, and G. Seynaeve. Wireless
transmission of vital signs of entrapped victims during search and rescue
operations in collapsed buildings. In 4th International Conference
on Wireless Mobile Communication and Healthcare(MOBIHEALTH),
pages 254–257, Nov 2014.

[4] A. J. A. Dhivya and J. Premkumar. Quadcopter based technology
for an emergency healthcare. In Third International Conference on
Biosignals, Images and Instrumentation (ICBSII), pages 1–3, 2017.



Fig. 10. Dynamic simulation of the effects of a load and external reaction
forces measured at the center of the aerial platform, using the new radial
trajectory method. External forces are applied for 0.1s in the opposite
direction to the end effector speed and the showing negligible torque
perturbations due to the external reaction force.

[5] K. Ito, S. Sugano, and H. Iwata. Development of attachable tele-
echography robot by a bystander at injury scene. In IEEE International
Conference on Mechatronics and Automation, pages 1270–1275, 2010.

[6] R. R. Murphy, V. Srinivasan, Z. Henkel, J. Suarez, M. Minson, J. C.
Straus, S. Hempstead, T. Valdez, and S. Egawa. Interacting with
trapped victims using robots. In IEEE International Conference on
Technologies for Homeland Security (HST), pages 32–37, 2013.

[7] Iván Maza, Fernando Caballero, Jesús Capitán, José Ramiro Martı́nez-
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