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Abstract— The emergence of new robotic technologies such
as compliant control and soft robotics, has contributed to safe
physical Human-Robot Interaction (pHRI) mainly for assistive
applications. However, a robot capable of directly manipulating
the human body, which is key for the implementation of
autonomous rescue robots, has not been developed so far. In this
paper, the development of a gripper and methods for the robotic
manipulation of a laying victim’s forearm, initiated by the robot
is addressed, and validated based on experimental results. An
underactuated gripper with added proprioceptive sensors has
been designed, with environment sensing and tactile recognition
capabilities. This method provides a stable grasping of a human
forearm that lays on a surface and is capable of estimating
the roll angle of the grasped arm for precise location and
safe manipulation. The roll-angle estimation method is based
on Machine Learning and has been trained with experimental
data obtained from experiments with human volunteers. The
resulting method provides robust and precise grasping, tolerant
to location inaccuracy with inexpensive sensors. This is one of
the very first works on the robotic human-body manipulation.

I. INTRODUCTION

Recent trends in robotics pursue the incorporation of
robotic systems among people, not only in the industry, as
collaborative robots (i.e. cobots) [1], but also in everyday life
as social robots [2] mostly for assistive applications, helping
patients [3] or elderly people [4].

Physical interaction between robots and humans is nec-
essary for many applications that include rehabilitation [5],
exoskeletons [6], or prosthesis [7]. The interaction between
robots and humans must be stable and safe [8] when phys-
ical contact occurs. This way, the emergence of innovative
technologies such as Variable Stiffness Actuators [9] or soft
robotics [10] among others, have contributed to safe physical
Human-Robot Interaction (pHRI).

Other applications require that the robot initiates the
contact. Those applications in which a robot intentionally
touches or even manipulates people are useful for diverse
fields such as assistive robotics [11] and necessary for search
and rescue missions [12] or healthcare applications [13]
among others.

Not many research studies regarding robot-initiated pHRI
can be found in literature. In [14], a robot that cleanses

This work was supported by the the Spanish project RTI2018-093421-
B-I00 and the European Commission under grant agreement BES-2016-
078237.
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Fig. 1. Robot-initiated grasping of the forearm of a laying person using an
underactuated adaptive gripper (top), and manipulation problems to solve
(bottom): a) Difficulty of getting a stable grasping of a human upper forearm
laying on a surface. b) Estimation of the actual roll grasping angle.

limbs of disabled people is presented, and a simulated robotic
repositioning controlled by an impedance Model Predictive
Control (MPC) is described in [15].

The choice or design of the end-effector is important for
the safe manipulation of human limbs. This way, multiple
grippers have been considered in previous works [16], how-
ever, there is still a need to develop robotic hands which
allow a robot to perform safe and autonomous grasps with
enough robustness and reliability to manipulate human limbs.

Although there is a growing interest on the development
of soft-grippers [17], the need for precise manipulation often
requires an adaptive but rigid solution. The use of grippers
with underactuated fingers based on rigid links [18] or
tendon-driven [19] provide adaptive and precise grasping that
can be adopted for pHRI.

Apart from the proprioceptive position-torque sensing ca-
pabilities of the finger actuators, grippers can have pressure
sensors to detect stable grasp conditions [20] or recognize
grasped objects [21]. In previous works we used high-
resolution tactile sensors to distinguish between human-body



Fig. 2. Sequence of 4 images of an unstable grasping using a conventional
underactuated gripper (From top to bottom and from left to right). This
grasp is unpleasant for a human, and unreliable.

parts and inert objects [22] through deep learning-based
techniques using rigid and flexible grippers [23].

This work is focused on the robot-initiated grasping of
the forearm of a laying person using grippers with two
underactuated fingers with two-phalanx (see Fig. 1), where
the main problems can be found:

• Unstable grasping of the forearm: The low profile of
the forearm over the laying surface (floor, table, bed,
etc.) makes difficult to make a stable grasp, where all
phalanx make stable contact with the arm, due to the
collisions with the floor and the inability of the finger
to bend without previous contact, as shown in figure 2.

• It is important to estimate the roll-angle of the grasped
arm in order to make a safe autonomous motion
planning. Depending on this angle, the movements
constraints of the forearm may change and the robot
could hurt the subject. In addition, it is also useful to
find the right area for biomedical sensor placement or
performing other procedures on the human body.

In this work, we present a new method based on the addi-
tion of one angular sensors to each underactuated finger to
have full measurement of the finger position when combined
with the actuator position information, for the detection of
both of the contact with environment and the angular position
of the grasped object, plus its application to the stable and
precise grasping of human arms. First, the sensor is used
to have precise positioning relative to the surface, and then,
used to estimate the roll-angle of the grasped arm.

This method makes a gentle and precise grasping of human
limbs that lie on a surface using grippers with underactuated
fingers without external pressure sensors possible, due to
the addition of a single proprioceptive angular sensor. This
is specially important when visual human detection method
provide approximate positioning of the human and the envi-
ronment.

Manipulation of human limbs is a basic step for the
physical human robot interaction needed in autonomous
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Fig. 3. Kinematic design of the gripper for pHRI. The shape of the
distal phalanxes and the joint limits are different to provide two kinds of
behaviours under external and internal forces whose sensitivity is illustrated
in orange color. Right finger is in the open position and left finger is in an
intermediate position rejecting all the forces coming from the external side
of the gripper. For clarity, only one finger has been labeled, and no l or r
sub-indexes are used.

TABLE I
PARAMETER VALUES OF THE UNDERACTUATED FINGER.

Parameter Value Parameter Value

O1Oa [16,−20] mm c 20 mm
l0, l1, l2 40 mm d 8 mm

a 25 mm ψ 90◦

b 60 mm width 15 mm
θ2min 0 (left), 20◦ (right)

rescue robots. However, no previous works have been found
on robot-initiated manipulation of human limbs.

This paper is structured as follows: In section II the design
of the gripper is presented. Then, in section III the method
for roll-angle estimation is presented, and in section IV the
method for stable grasping and roll-angle compensation of a
human forearm is described. Finally, some conclusions and
future work are included.

II. ADAPTIVE GRIPPER

The designed gripper has two independent underactuated
fingers with two phalanxes and a single actuator each. The
use of tendons (e.g. Yale OpenHand Model T42) as in [19]
has been discarded, due to the displacements of the contact
surfaces which pinch the skin of the forearm. For this reason,
a rigid linkage approach has been used.

The kinematic design is shown in Figure 3. The parameter
values, summarised in Table I, have been designed to adapt to
the shape and size of a regular human upper-forearm with a
perimeter between 15.3 and 18.8 cm. The shape of the distal
phalanx are different to provide two kind of behaviours under
external and internal forces. The values of the θ2l y θ2r are
also different.

A mechanical limit makes the distal phalanx angle θ2 ≥
θ2min. The actual position of the finger depends on the



balance between external forces f1, f2 and the actuator
torque. The spring ensures contact between the finger pads
and external objects and make the finger stable when no
external forces are applied. The extension springs are made
with 0.6mm� steel wire and a stiffness of 164N/m.

A. Compliance to external forces

The gripper has to adapt to the grasped object, and one of
the fingers has been modified to allow better compliance to
the environment. In Figure 3, the sensitivity to internal and
external forces normal to the contact surfaces of the distal
phalanxes is shown. The right finger is in open position

For a given actuator position θa, the finger position can
be modified applying external or internal (applied to inner
surfaces of the gripper) based on a four-linkage system
with vertices O1, O2, O3 and O4. Considering O1O3 as a
fixed segment, the opposite segment O2O4 rotates around
an instantaneous center of rotation O5, which is a virtual
axis O5 located at the intersection of the lines defined by
segments O1O2 and O3O4. If we consider only the surface-
normal component of the external forces, neglecting the
friction of the contact surfaces, the resulting torque around
O5 depends mainly on the magnitude of the force and the
distance between the force vector and the centre of rotation
O5. The spring stiffness has been chosen to provide the
torque enough to overcome the friction and gravitational
effects. For the rest of the analysis, frictions and other
dynamic components are neglected. The points pi and pe
define the nearest surface point to the instantaneous rotation
centre from the interior and exterior sides respectively, and
define the sign of the resulting rotation torque. When O2 =
O2min negative torques are rejected due to the mechanical
limit of the joint.

The right finger has been redesigned to make it compliant
to exterior forces, while also adapting to the grasped objects,
in the following ways: The length of the distal phalanx
has been increased to have larger torques from side forces,
and the range of θ2r has been mechanically limited with
a minimum of 20◦ to bend the finger when the forces are
applied on the fingertip. This finger will be used here to
measure distance with environment surfaces and to prepare
the grasping, bending one finger, before grabbing the human
arm.

The left finger has been kept with the original size to bend
under contact with objects with interior side of the gripper.
The position of the left finger in Figure 3 shows how this
configuration is rigid to exterior forces but sensible to any
interior force. In figure 4 a picture of the actual gripper under
external forces can be seen.

The prototype has been designed for easy manufacturing
using FDM 3D-printers, and its design has been made
available in a public repository 1.

B. Grasping force

Due to the parallel rigid linkage system, the forces at the
center of the interior contact areas of the phalanxes in this

1/github.com/TaISLab/umahand
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Fig. 4. Prototype of the robot gripper for pHRI with different compliance
to external forces: Left finger (Up) reject exterior forces and right finger
(Down) bends when in contact with the environment.

gripper depends also on the joint values [20], as it is shown
in the equation 1.

f = J−TT−T t (1)

Where f are the interior contact forces vector, t is the
actuator torque vector, T is the Transfer matrix, that relates
the velocities of the actuators to the joint velocities, J is the
Jacobian matrix that relates the finger joint velocities to the
speed of the contact points. T−T means the inverse of the
transposed of the Transfer matrix. Although if the Jacobian
and Transfer matrices depend on the actual positions, if the
same final grasping position (i.e. grasping the same object)
is kept, the magnitude of the closing forces of each finger
(f1 and f2) are proportional to the actuator torque ta. With
a maximum torque for each of the Dynamixel MX-28 servos
of 2.5 Nm, the effective closing forces for each finger have
been measured from 4.9 N (20%) to 27.4 N (100%).

C. Proprioceptive sensing

By adding proprioceptive angular sensors, the angles O2l

and O2r are measured. This way, with the position informa-
tion provided by the servos (θal and θar), the position of the
remaining phalanxes (θ1l and θ1r) can be computed. As a
result, the position of the external objects can be estimated
using the θ2r and the shape of the grasped object can be
inferred with the positions of the two fingers θl and θr.

Two potentiometers (muRata SV01 10kΩ linear) have
been used for the measurement of the distal joints, and a
micro-controller with 10-bits ADC, (0.26◦ resolution) has
been added to the gripper as a DAQ with a 50Hz sample
rate. The two Dynamixel MX-28 servos include a 12-bits
digital magnetic encoder (0.088◦ resolution). They provide
feedback of the servo positions θal and θar at a rate of up-to
50Hz.

III. ROLL-ANGLE ESTIMATION

To manipulate the arm of a victim it is critical to know
the roll-angle (φ) of the forearm during the grasping process
(see Fig.5). For this purpose, the use of machine learning
techniques have been considered and regression models have
been obtained to estimate φ.
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Fig. 5. Cross section of a human upper forearm grasped by the under-
actuated gripper, showing the variations in the passive (θ2l,θ2r) and active
(θal,θar) DOF’s, based on the roll grasping-angle (Φ).

A grasping operation has been programmed as a constant-
velocity trajectory for both actuators in opposite directions
with a stiff proportional-only controller with programmable
torque limits. When both actuator velocities (θ̇ar

, θ̇al
) are

null, the goal point is set to the current position, stopping
the motion of the fingers.

A torque of 1.15 Nm (46% of the maximum torque) that
provides a closing force of about 11.76 N per finger has been
selected as the closing torque for the experiments, because
it has been considered by the volunteers as a firm and gentle
grasp.

In order to obtain the ground-truth angular measurement of
the human forearm, a device that includes an accelerometer
has been implemented. The device is held by the human in
their hand during the experiments. As the attitude of the robot
gripper is known, the relative rolling angle of the human
forearm with respect the gripper can be obtained and used
as a reference data for training and performance evaluation
of estimation methods.

The data collection procedure is carried out with the
gripper placed on a table, and volunteers are asked to put
their hands inside the gripper with different angles while the
gripper grasps their forearm and collects data. An illustration
of this procedure and the data collected from one volunteer
are presented in Fig.6.

The relationships between θar
, θal

, θ2r , θ2l and φ can be
seen in Fig.7. This figure shows a set of data used for training
and testing the regression models.

Three machine learning methods have been trained to get
an estimation model: Gaussian Process (GPR), Regression
Tree (RT) and Bagging Regression Tree (BRT). The training
and evaluation processes have been carried out using Matlab
R2018b, the Statistics and Machine Learning Toolbox and
the Regression Learner application. A dataset formed by
1110 combinations of joint angles and φ from the left arm
of one person are used to train and test the methods. The
performance of the regression models is presented in Fig.8.
GPR obtains the better performance with a Maximum Error
of 9.24o and a Mean Absolute Error of 3.77o.
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Fig. 6. Sequence of 6 grasps during the data collection process of
one volunteer (top). Motors, joints and roll angle positions during a data
collection process (bottom). Note that in this graph the open-and-close
process is repeated each 6 seconds. Angle φ is measured using the data
from an accelerometer integrated in a device held by the subject.
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Fig. 7. Joint values for 36 grasps, measured at different angles from 0o to
180o, on the left arm of a volunteer with a perimeter of 17.9 cm, against
the roll angle.
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Fig. 8. Performance of Gaussian Process (GPR), Regression Tree (RT)
and Bagging Regression Tree (BRT) models.

IV. GRASPING AND ROLL-ANGLE COMPENSATION OF A
HUMAN FOREARM

The purpose of this procedure is to perform the relocation
of the arm of a laying person, as a basic step for further
operations. Some assumptions have been made during the
definition of the forearm manipulation procedure: The victim
is considered to be static on a flat surface. The approximate
position of the upper forearm is known, and the victim is
passive during all the procedure. There are computer vision
methods [24] for the detection of human bodies that provide
approximate 3D location of the human joints, although this
problem is not considered here. The experiments presented
in this paper have been carried out with the consent of the
subjects.

Instead of using a traditional pick-and-place procedure, an
alternative strategy, inspired by the manipulation strategy for
small objects on a table presented in [25], has been devel-
oped. Fig. 9 shows the sequence of the grasping procedure
with the following steps:

1) Approach: The robot gripper is placed near the human
arm, opposite to the rest of the body with a pitch angle
of −30◦ looking toward the target position, with the
right finger described in section 3 looking down.

2) Find the surface: The robot moves vertically towards
the surface until the right finger is almost parallel to
the surface. This condition is detected thanks to the
proprioceptive sensors integrated in the underactuated
gripper.

3) Surface following: The gripper is moved toward the
human arm keeping the desired reading at the poten-
tiometer to follow the shape of the surface until the
estimated distance to the human forearm is traveled.

4) Grabbing: This phase combines two actions at the
same time. The manipulator sets the tool center point
(TCP) aligned with the O4 axis and starts a rotation
of 70o over it to wrap the human forearm. Meanwhile,
the fingers start moving to the closing position with
velocity and torque limits.

5) Lift: When the servo positions are steady, the goal
positions are updated to the actual positions and the
grasping is considered stable to be gently lifted.

6) Roll-angle Estimation: In this step, once the forearm is
grasped, the robot estimates φ using the current angle
of the joints of the finger (Q = [θar

, θal
, θ2r , θ2l ]) and

a Gaussian Process regression model (GPR) previously
obtained, with outcomes the estimated roll-angle (φe).
The estimation process and the regression model are
explained in detail in section III.

7) Relocation: Once φe is obtained, the robot initiates the
relocation process. This phase consists of three steps:
in first place, the robot rotates the forearm an angle
φe to get it parallel to the contact surface. Then, the
manipulator performs an horizontal circular trajectory
in order to separate the forearm to the body. Finally,
the manipulator realize a perpendicular approach to the
contact surface to place again the arm on the surface.
The gripper opens and releases the wrist, finishing the
manipulation procedure.

V. CONCLUSIONS

In this paper an initial method for the manipulation of
human limbs with robot-initiated contact, has been presented.
This method is based on the design of an asymmetrical
gripper with modest sensing capabilities that add enhanced
environment sensing and tactile recognition to a robot arm
for autonomous physical human-robot interaction.

The gripper has environment sensing and compliant inter-
action capabilities, without the need for expensive sensors
or additional actuators, which provide robust grasping under
location uncertainty, as the manipulator accommodates to the
support surface with tactile sensing and performs a wide
grasping robust to moderate position inaccuracies. Results
demonstrate the reliability of the manipulation methodology
as the task has been carried out with satisfactory results in
every test with different people.

Furthermore, to reduce the uncertainty on the position
of the human forearm once grasped, a new method based
on the same proprioceptive sensors, has been designed and
implemented for the estimation of the roll-angle of the
human forearm when grasped. It has been evaluated using
experimental data obtained with a collaborative robot and
a set of human volunteers. Note that the Gaussian Process
Regression model (GPR) depends on the data acquired for
each person, hence, different GPRs are used for different
people.

This method provides a gentle and precise grasping of
human limbs that lie on a surface using grippers with
underactuated fingers without external pressure sensors, just
with the addition of two inexpensive potentiometers. This is
specially important when visual human detection methods do
not provide roll angle of the human limbs or the forearm roll
angle may change during grasping due to the robot gripper
or movement of the human.

The interaction capabilities of the compliant gripper could
be extended, as the stiffness of the distal phalanx of the finger
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Fig. 9. Steps of the manipulation task during experimentation with a person laying on a table. Frames 1 to 5 illustrate the picking operation and frames
6 to 8 show the forearm roll-angle correction and relocation.

depends on the actuator position. This way, one finger may
work as a variable-impedance end-effector, with possible new
interaction applications.
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