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Abstract— Simulation tools are essential for robotics research,
especially for those domains in which safety is crucial, such as
Human-Robot Collaboration (HRC). However, it is challenging
to simulate human behaviors, and existing robotics simulators
do not integrate functional human models. This work presents
Open-VICO, an open-source toolkit to integrate virtual human
models in Gazebo focusing on vision-based human tracking. In
particular, Open-VICO allows to combine in the same simu-
lation environment realistic human kinematic models, multi-
camera vision setups, and human-tracking techniques along
with numerous robot and sensor models thanks to Gazebo.
The possibility to incorporate pre-recorded human skeleton
motion with Motion Capture systems broadens the landscape
of human performance behavioral analysis within Human-
Robot Interaction (HRI) settings. To describe the functionalities
and stress the potential of the toolkit four specific examples,
chosen among relevant literature challenges in the field, are
developed using our simulation utils: i) 3D multi-RGB-D camera
calibration in simulation, ii) creation of a synthetic human
skeleton tracking dataset based on OpenPose, iii) multi-camera
scenario for human skeleton tracking in simulation, and iv) a
human-robot interaction example. The key of this work is to
create a straightforward pipeline which we hope will motivate
research on new vision-based algorithms and methodologies for
lightweight human-tracking and flexible human-robot applica-
tions.

I. Introduction

The future of robotics envisions a world where the close
coexistence of robots and humans is a reality [1]–[3]. In
this scenario, safety must be guaranteed, and future robotic
systems must be provided with advanced tools to enable high-
accuracy human tracking and ensure human safety.
Human modeling and tracking is a fundamental research

topic in multiple industries such as sports [4], [5], health-
care [6]–[8], or entertainment [9], [10]; and is undergoing an
enormous momentum in robotics due to the current trends
of the discipline and socio-economical demands. Existing
technologies for human tracking, also called motion capture
(MoCap) systems, rely on different information sources such
as acceleration data provided by e.g., Inertial Measurement
Units (IMUs) [11], beacons [12], or Ultra-Wide Band (UWB)
signals [13]. Nonetheless, visual perception systems are the
most common approach in this regard. These systems can
be classified as marker-based [14] or marker-less [15], [16]).
The performance of marker-less human tracking systems is
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Fig. 1. Illustration of Open-VICO possible usages, an open-source Gazebo
toolkit for the integration of 3D human models and multi-vision systems
within a robotic simulator environment.

relatively poor, and the most utilized human tracking tech-
niques regard marker-based vision systems. However, these
systems are limited to particular setups due to outrageous
expenses or the necessity of wearing specialized suits.
On the other hand, simulation tools provide an excellent

instrument to develop and test methodologies and algorithms
without compromising hardware integration and safety. In
robotics, simulation is essential for numerous and well-
known reasons. In [17] a detailed roadmap with specific
requirements and suggestion for developing simulation en-
vironments in robotics is depicted. To specifically tackle
the points raised on human-in-the-loop simulation, this work
presents Open-VICO (see Fig. 1), an Open-Source Gazebo
toolkit conceived for HRI.
Gazebo 1 is one of the most popular 3D ROS-based

simulators for robotic environments and systems, complete
with dynamic and kinematic physics and a pluggable physics
engine. As a practical and manufacturer-independent soft-
ware, Gazebo offers a rich environment for the rapid de-
velopment and testing of complex robot systems. Lately
some features for human simulation have been implemented
however the process is still cumbersome and poorly customis-
able. Open-VICO tackles this challenge by integrating virtual
human kinematic models within the Gazebo framework in a

1http://gazebosim.org/
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Fig. 2. Software and Data structure conceptualization of Open-VICO. The toolkit provides the utils to integrate animated actors in Gazebo thanks to
Blender, the Makehuman software and a skeleton motion generator (e.g., a MoCap system). Inside Gazebo, Open-VICO ensures a simulated interaction
between actors, cameras and robotic models.

smoother way enhancing the simulation possibilities for the
user.
Moreover, the toolkit allows the spawn of multiple camera

models along with vision-based human skeleton tracking
methods. In particular, the contributions of this paper are
the following:

• Presentation of Open-VICO as an open-source Gazebo
toolkit for empowering human kinematic models inside
a robotic simulator.

• Description of the toolkit software architecture and
modeling pipeline.

• Illustration of the following four examples to demon-
strate the potential of the tool:
1) 3D camera calibration in a simulated multi-camera
environment.

2) Creation of synthetic dataset of human motions
in simulation using a simulated RGB-D camera
model and OpenPose.

3) Creation of a multi-RGB-D camera setup with
OpenPose that allows the evaluation of the sys-
tem and enables the development of multi-sensor
fusion algorithms in simulation.

4) An HRI environment in which pre-recorded human
motions with a MoCap are integrated within Open-
VICO to create virtual human motions to teleop-
erate a virtual robotic arm.

The rest of the paper is structured as follows: Section II-D
describes the general features and relevance of the toolkit,
and the software architecture and dependencies. Section III-
D presents four showcases to demonstrate the features of the
tool for different applications considering relevant research
challenges in the field. Finally, the conclusions are included
in section IV.

II. Toolkit Overview

This section describes the main relevance, characteristics
and software architecture of Open-VICO. Fig. 2 illustrates a

general overview of the data and software architecture. Open-
VICO comprises a series of tools working as a ROS-based
interface and aiming at increasing the humans’ presence
in the Gazebo platform that so far has been used almost
exclusively by the robotics community. Our code and further
documentation is available at https://gitlab.iit.
it/hrii-public/open-vico.

A. Relevance and Potential Applications
We list here a series of literature research areas which we

believe will benefit from using Open-VICO.
1) Extrinsic Calibration of Multi-Sensor Vision Systems:

In computer vision applications, using a single camera con-
siderably limits the working area, especially when dealing
with RGB-D cameras with a narrow Field Of View (FoV).
Moreover, other factors affect the performance of single-
camera settings, such as occlusions or possible limited ro-
bustness. Hence, using multiple cameras to deal with these
issues is very appealing.
Such systems need to be calibrated in order to have the

data perceived from the multiple cameras represented w.r.t.
the same reference frame. This process is called extrinsic
calibration and estimates the relative poses between the cam-
eras. The most popular solutions consist of using a calibration
pattern to be shown simultaneously to the cameras trying to
optimize the reprojection error [18], [19]. Nevertheless, the
number of possible solutions is considerable, and choosing
the best fit for an application may not be trivial. In addition,
there are some extra challenges, such as combining different
types of cameras.
Especially when developing and testing a new algorithm or

comparing it to others, the opportunity to assess the result’s
accuracy could be of great help. Open-VICO offers a simple
pipeline to spawn multiple cameras in predefined scriptable
configurations and patterns, randomly move a calibration
prop and synchronize the images of the different cameras
using the rosbag tools. In particular, the possibility to have
ground-truth data resulting in a readable and standard format
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is of interest for the computer vision community. In addition,
extrinsic calibration algorithms can be implemented and
tested in simulation without expending hardware resources
and wasting time locating markers in several positions or
moving them in the scene.

2) Synthetic Human Motion Dataset Creation: Many ap-
plications hold fundamental challenges for estimating human
pose, shape, and motion from images and videos. Recent
advances in 2D human pose estimation use large amounts
of manually-labeled training data for learning convolutional
neural networks (CNNs). Labeling all these data is time-
consuming and challenging to extend. Moreover, manual
labeling of the 3D pose, depth, and motion attributes is
impractical. It has been proved that the use of synthetically-
generated datasets guarantees good performances in training
networks opening new possibilities for the use of cheap,
potentially limitless datasets [20], [21].
Open-VICO is integrated within common robotic ROS-

based toolsets, providing familiar means by which roboticists
can build labeled RGB and RGB-D synthetic datasets for
their work. This tool is designed for minimal user involve-
ment and maximum flexibility during the data generation
process. The user can specify arbitrary motion plans for
various objects in the scene, camera position, simulated
frame rate, actor aspect and dress-code, background, and lu-
minosity level, among other attributes. Another fundamental
potential of Open-VICO is to improve the performance of
action recognition by creating synthetic data in cases where
the actual data is limited, e.g., domain mismatch between
training/tests such as viewpoints or low-data regime.

3) Human Tracking with Multi-Sensor Vision Systems:
There is a need within human movement sciences for a
markerless mocap system, which is easy to use and suffi-
ciently accurate to evaluate motor performance. In the last
decade, deep-learning-based markerless motion capture sys-
tems attracted much research interest, obtaining sufficiently
fair results in 2D human tracking. Nevertheless, we are still
far from having a stable, accurate, and hardware-compatible
3D skeleton tracking system that competes with flagship
marker-based systems. Among these, OpenPose [15] is one of
the most popular open-source pose estimation approaches. A
few attempts were made in this sense to extend OpenPose,
lifting it to the third dimension. The most immediate and
trivial solution would be to use RGB-D cameras. If the 2D
joint location is known, a simple lockup in the depth cloud
is acceptable.
However, depth retrieval still has several issues: low reso-

lution, noise, and occlusions can introduce jerks and jumps in
the output, especially when it comes to extremities or at great
distances. This issue becomes even more problematic if the
2D joint estimation is not perfect in the first place. As a con-
sequence joining the information of multiple devices using
triangulation techniques [22] or fusion algorithms [23] seems
to be a suitable solution for the aforementioned problems. In
this regard, Open-VICO offers the perfect environment for
testing and developing these solutions with a fast and direct
comparison with ground truth data.

4) Human-Robot Interaction in Simulation: In industrial
environments, the collaboration between humans and robots
is considered a profitable and almost required strategy to
increase productivity and decrease the cost of production.
This strategy benefits from combining both the robot’s fast
repetition and high production capabilities and the operator’s
reasoning, reacting, and planning abilities. In such a scenario,
aiming at guaranteeing an efficient response of the robotic
partner requires the constant monitoring of the human actor
position and intention. Reliability and accuracy have always
favored wearable systems in these kinds of contexts. How-
ever, the discomfort caused by the protracted wearing was
determinant in arousing a mild enthusiasm in the industrial
world. Vision-based solutions have the advantage of imme-
diacy, cost, and freedom of movement.
On the other hand, they lack robustness and suffer oc-

clusions. To overcome these inconveniences is essential to
optimize the cameras’ framing and the agents’ relative posi-
tion. Moreover, filtering algorithms and techniques may be
used to obtain a more desirable behavior.
The research studies in [24], [25] faced issues and took

compromises in teleoperating a robot relying on an OpenPose
detection system. To overcome jerks and jumps of the robotic
counterpart, the authors chose heuristic solutions such as eu-
clidean filters on subjects’ links or predetermined operating
area of the agent to match the camera Field of View (FoV).
In this regard, the Gazebo ROS-integrated simulation

environment offers plenty of options for testing and proto-
typing these scenarios. Although Gazebo is a physics engine
that allows simulating dynamic behaviors, this option has
not been yet exploited in the presented toolbox due to its
considerable complexities but is the next step of continuous
software integration and development within Open-VICO.

B. Human 3D Model Definition and Integration

This section explains how to build an animated human
body model for Gazebo. First, a 3D human model is created
and rigged using MakeHuman 2, an open-source digital
human modeling (DHM) software that offers high detail
features to personalize the avatar. Rigging refers to creating
the bone structure of a 3D model. The model can then
be easily imported in the 3D computer graphics software
Blender 3 using an embedded plugin (see Fig. 2. This
step is still necessary to retarget the 3D model, namely
bringing it to life repurpusing previously acquired mocap
data as a marionette in .fbx or .bvh extension. Shortly, it
will be possible to retarget a Collada model directly in
Gazebo, although this feature is still under development.
After retargeting, a Collada file should be exported from
Blender and spawned in the Gazebo simulation environment
through the “actor” class.
To allow a cross-comparison of deep-learning-based Mo-

Cap systems as anticipated in section II-A.3 and allow a
smooth and natural rigging procedure, the skeleton model
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should meet a certain number of requirements. It should be
complex enough in terms of degrees of freedom to assure a
natural movement of the avatar and, at the same time, have
the fundamental keypoints to guarantee an harmonic joint
comparison with most of the 2D deep learning-based MoCap
systems, which mainly rely on MPI, COCO, and BODY 25
models. Although rough in the chest’s links estimation, the
latter offers the chance to track the hands; for this reason,
the hands were also added to the rig. If not retargeted, they
will follow the wrist parent joint trajectory.

C. Camera Model Integration
Especially in cases relying on depth sensors to lift to

3D markerless 2D human tracking algorithms, the sensor
performance affects the estimation outcome significantly.
Moreover, different camera brands have different FoV or
ROS topics names in their ROS wrapper if they have one.
Open-VICO provides guidelines to integrate different camera
models, allowing it to operate at a higher level and easily
merge information from different sensors. So far, three cam-
era models have been integrated within the framework, the
Kinect v2, the Realsense D435, and the ZED2. Nevertheless,
more models will be integrated as the toolkit is being
developed.

D. Skeleton Tracking Method
The apparent advantages that markerless solutions offer

in human tracking generated high interest in the research
community. As a result, many methodologies and systems
are continuously under development, claiming to be the
best so far. Open-VICO is the ideal environment to cross-
compare and fuse the results of these systems offering the
footprint of a bottleneck custom ROS message for joint
position and name harmonization compatible with the human
landmarks described in sectio II-B. In [26] there are some
guidelines on how to perform this harmonization procedure
among different training datasets (e.g., COCO) typically used
in deep learning-based skeleton tracking systems. Open-
VICO’s structure allows the user to easily append additional
tracking algorithms to the default list, enriching the possible
comparison combinations.

III. Application Examples
This section presents four use-cases using Open-VICO

utils to demonstrate the proposed framework’s potential. Note
that the methods presented in this section are not novel per
se as they are not intended to be the contribution and aim of
this paper. On the contrary, this section implements existing
solutions that benefit from the tools provided by Open-VICO
to take advantages of working in simulation.

A. Multi-Camera Calibration
An application example of Open-VICO regarding its use

for multi-camera settings extrinsic calibration evaluation is
presented in this section. To show the features and the
potential of the Open-VICO tool, we employ the extrinsic
calibration algorithm described in [19] using a synthetic

1. Spawn camera setup

2. Moving prop randomly

4. Synchronized frames folder creation

3. ROSbag recording and synchronization

5. Extrinsic calibration algorithm

6. Rigid transformation to world frame

7. Spawn and comparison with initial setup

Fig. 3. The multi-camera calibration routine in Open-VICO is defined
by the seven steps presented in the figure: 1. The multi-camera setup is
spawned in the Gazebo world. 2. The virtual prop is spawned in different
random positions inside a predefined workspace. 3. The data obtained by
the cameras is recorded with a rosbag and synchronized. 4. Folders with
synchronized frames are created automatically. 5. The data feeds an extrinsic
calibration algorithm (e.g., [19]). 6. Calculation of the rigid transformations
from each camera w.r.t. the world frame. 7. Spawn the calibrated setup
and comparison with the ground truth to evaluate the performance of the
calibration algorithm.

environment and based on Aruco markers detection. That
work presented a quantitative evaluation of the method
based on tracking custom-shaped reflective markers attached
to the cameras to track their pose in the space using an
optoelectronic MoCap system. This solution, however, might
be considered naive and prone to errors, while working in
simulation allows directly comparing the results with the
initial configuration.
We picture a scenario where two calibration props are to be

compared to test the best fit for the calibration procedure. The
steps of the calibration-and-evaluation routine are outlined
in Fig. 3. The calibration routine defines the seven steps
specified in the figure.
Suppose the coordinate frame of reference is not attached

to the camera frame but rather a world coordinate frame
attached to some object. In that case, a rigid body transforma-
tion (rotation and translation) relates the camera coordinate



Fig. 4. Average position errors in the estimation of the target objects, using
four cameras at different distances using two configuration props.

Fig. 5. Illustration of the Open-VICO use-case to create synthetic
datasets of human motions. The toolkit allows the definition of numerous
environments (top), human kinematic models and appearance configurations
(left), and human actions and motions (bottom), within a framework of
multi-vision systems (center) and human tracking algorithms (right).

frame to the world coordinate frame. To obtain this, we used
an additional ArUco marker spawned in the gazebo world to
overlap the initial configuration setup with the calibrated one
(see Fig. 3).
As the system’s precision is influenced by the distance

between the camera and the object (i.e., the farther the
object, the lower the accuracy), we repeat the experiment at
four different distances using two different shaped patterns
designed in Blender. The cameras form circles of radius 2,
3, 4, and 5 meters. The average pose error of the calibrated
cameras w.r.t. the original pose spawned is then averaged and
plotted in Fig. 4.

B. Synthetic Dataset Creation

Regarding the creation of synthetic datasets with multi-
vision systems, this section considers the scenario described
by [27] as an example. In which the dataset “NTU RGB+D
120” [28] for 3D action recognition is used to train a
deep learning algorithm for fall detection. Open-VICO’s
pipeline relies on the MakeHuman “Mass produce” plugin
to generate large sets of humans and clothes. Each model is
retargeted with synthetic falling animations downloaded from

Fig. 6. Visualization of multi-camera human tracking in simulation using
Open-VICO and OpenPose. Gazebo visualization of the setup (top). Single-
camera tracking compared with the ground truth (middle). Fused data
tracking compared with the ground truth (bottom).

the Mixamo 4 website. The models and the animations are
then performed within a parametrized vision setup spawned
in the gazebo world (see Fig. 5). As a result is possible to
obtain a huge dataset with countless point of view with little
effort.

C. Multi-Camera Human Tracking

As proof of concept, this section shows the integration of
a basic fusion algorithm in Gazebo, benefiting Open-VICO
features. An enhanced 3D RGB-D-based OpenPose is im-
plemented exploiting multiple cameras inside the simulator.
This example employs 3 RGB-D cameras spawned around a
virtual subject on a 3m radius circumference. Fig. 6 shows
the overlapping of the depth cloud, the ground truth, and the
OpenPose outcomes for a particular camera.
The joints’ positions are then logged in a MATLAB-

compatible format for further analysis and evaluation. Open-
VICO provides the tools to implement and analyze multi-
vision systems and algorithms for marker-less human track-
ing in simulation. In the particular toy example presented in
this paper, the fusion of the data perceived from the three
OpenPose systems is realised by applying a simple average
filter. The results are depicted in Fig. 7. The analysis allows
evaluating the performance of the applied methodologies,
detecting errors, and applying enhanced fusion algorithms
to improve robustness.

4https://www.mixamo.com
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Fig. 7. Results of the multi-camera human tracking application in simula-
tion thanks to Open-VICO features. When occlusions occurs, single-cameras
cannot view certain joints. However, fused data is robust to occlusions and
results are more accurate in every case.

D. Human-Robot Interaction

This section presents an example of fully-virtual teleop-
eration inside Gazebo thanks to the Open-VICO features.
The example demonstrates the need to have these systems in
simulation to test the camera settings and algorithms while
ensuring safety both for the human and the robot. In the
application, a robotic arm reproduces the motion of a human
during a writing task attempting to write the world "VICO".
The motion of the human has been previously recorded in
a real scenario with a MoCap system and integrated inside
Gazebo according to the Open-VICO process described in II-
B. A Franka Emika manipulator is controlled using a carte-
sian impedance controller [29] and the inputs given by 3D
Openpose with an RGB-D camera. The software acquires the
initial position of the right hand and the end-effector frame
w.r.t. the world frame. The following acquisitions are needed
to compute the hand displacement from the initial position
and send it to the robot controller as desired equilibrium
pose.
Two particular cases are presented, in which the only

difference is the camera’s location in the workspace. In the
first case, the system fails, while the second is successful,
demonstrating the fragility of markerless vision systems
and the potential of Open-VICO for developing safe HRI
applications. Fig. 8 shows how a wrong framing of a camera
inputting the 3D OpenPose tracking system may affect the
outcome writing task.

IV. Conclusions

In conclusion, this paper proposes a comprehensive col-
lection and integration of tools in the Open-VICO toolkit
as the first of its kind to the authors’ best knowledge. The
framework allows the integration of human-simulated models
into the Gazebo robotic simulator environment and provides
the potential to test and verify HRI systems. Flexibility
in package parameters like the simulated world, recorded

motion plans, and camera parameters allowed for rapid
generation of scenarios. The software architecture and po-
tential applications were described along with the whole
toolkit pipeline to create virtual human kinematic models and
motions and integrate them in a Gazebo world. Moreover,
four use-cases were presented, demonstrating the toolkit’s
potential for multi-sensor vision systems and HRI in simula-
tion. Future works will consider including collision features
to enhance the collaboration tasks between actors. An online
control marionette-like of the human model in Gazebo using
a motion capture system will be proposed. Furthermore, we
will enlarge and integrate the panorama of deep-learning-
based mocap systems to offer a more extensive selection for
richer cross-comparison.
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