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Abstract— Using large datasets in machine learning has
led to outstanding results, in some cases outperforming hu-
mans in tasks that were believed impossible for machines.
However, achieving human-level performance when dealing
with physically interactive tasks, e.g., in contact-rich robotic
manipulation, is still a big challenge. It is well known that
regulating the Cartesian impedance for such operations is of
utmost importance for their successful execution. Approaches
like Reinforcement Learning (RL) can be a promising paradigm
for solving such problems. More precisely, approaches that
use task-agnostic expert demonstrations to bootstrap learning
when solving new tasks have a huge potential since they
can exploit large datasets. However, existing data collection
systems are expensive, complex, or do not allow for impedance
regulation. This work represents a first step towards a data
collection framework suitable for collecting large datasets of
impedance-based expert demonstrations compatible with the
RL problem formulation, where a novel action space, namely
Variable Impedance Control in End-effector Space (VICES),
is used. The framework is designed according to requirements
acquired after an extensive analysis of available data collection
frameworks for robotics manipulation. The result is a low-
cost and open-access tele-impedance framework which makes
human experts capable of demonstrating contact-rich tasks.

I. INTRODUCTION

Performing contact-rich manipulation tasks is still a big
challenge in robotics. Solving them would unlock the use
of robots for applications like logistics and assembly, where
their use can have a strong impact. Different aspects make
contact-rich manipulation particularly hard to solve. The
dynamics of the system around contacts are difficult to
model, and small modeling errors can induce task failure.
Moreover, perception of the scene is hard due to the frequent
co-existence of multiple different objects along with the
manipulating hand in a small region.

Imitation Learning (IL) [1] is a viable approach for such
problems, and one widely used IL approach is behavioral
cloning [2]. Although it has been successfully applied, it
suffers from distributional shift [3], meaning that it strug-
gles outside the manifold of the demonstration data. An
alternative IL approach is Inverse Reinforcement Learn-
ing (IRL) [4]. Despite the appealing idea, the framework
makes the limiting assumption of having expert task-specific
demonstrations and the joint optimization of policy and
reward renders the training process difficult to stabilize.
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Fig. 1. A human expert teleoperating a robotic manipulator thanks to
the proposed open tele-impedance framewoﬂ A video of the experimental
session and a demonstration of the framework using a real Franka Emika
Panda robotic manipulator is include

Another attractive framework is Reinforcement Learning
(RL), where the agent learns to accomplish a task by trial
and error, maximizing an expected future cumulative reward.
In the context of robotic manipulation, a natural reward
choice is sparse and binary (i.e., +1 when the task succeeds,
0 otherwise). Before the agent is able to receive useful
feedback, it has to explore the state-action space until task
completion, which makes RL algorithms extremely sample
inefficient for this application. One possible solution to this
problem is reward shaping. However, designing a reward
is often counterintuitive, requires handcrafting, might lead
to unexpected undesired behaviors, and is prone to local
optima [5].

An interesting alternative to reward shaping is the in-
tegration of task demonstrations into RL algorithms [6]—
[11] (Fig. [I). The additional knowledge encoded into the
demonstrations is used to bootstrap learning, and speed
it up. A class of these approaches leverages task-agnostic
demonstrations to learn a new task [8], [10]. In this case,
demonstrations are used as generic prior experience to learn
aspects of environment and task. We deem that these methods
are among the most promising ones since they can make
use of large datasets, which have resulted in remarkable
results in other machine learning fields, e.g. computer vision
and natural language processing. Moreover, these methods
resemble how humans learn new tasks. Prior experience
allows them to narrow down the search space and as a
consequence, they are able to master a new task after a few
trials. In this paper, we refer to these approaches as task-
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agnostic demonstration-based RL.

Humans are able to master contact-rich manipulation
tasks, thus it is natural to take inspiration from them when
formulating the RL problem. It is well-known that humans
regulate the impedance of their arms according to the require-
ment while performing contact-rich tasks [12]. In [13], the
Variable Impedance Control in End-effector Space (VICES)
is introduced as a novel action space for RL that consists
of Cartesian impedance and end-effector pose. In the paper,
it is shown that this action space formulation improves
sample efficiency of model-free RL algorithms with respect
to common formulations. Although that, none of the task-
agnostic demonstration-based RL approaches uses this action
space formulation. These approaches are presented in detail
in the next section. This might be due to the lack of a suitable
data collection system.

In this paper, we design an open system to ease and enable
the collection of motion and impedance expert trajectories
for contact-rich manipulation with Cartesian impedance-
controlled robots. More specifically, we target tasks that
require impedance adaptation to be successfully fulfilled. We
gather insights from related works on data collection systems
and task-agnostic demonstration-based RL approaches to
understand what the requirements for such a system should
be. Finally, we design and test the devised framework.

II. RELATED WORK

A. Task-agnostic Demonstration-based RL

The approaches discussed here integrate a dataset of task-
agnostic interactions (i.e., state-action sequences) into RL
to learn a new contact-rich task. In [6] the authors use
generative modeling and representation learning to learn a
model that maps a random (latent) variable to meaning-
ful action distributions conditioned on the current state.
Demonstrations come from a mix of different successful
tasks, where meaningful behaviors are executed. Learning
a policy in the space of the latent variable becomes easier
because random actions are more likely to correspond to
user behaviors. A similar approach is adopted in [7], where
exploration is guided using a learned prior distribution over
skills (i.e., action sequences) conditioned on the current state.
The same authors in [8] improve their previous framework
by adding a few task-specific demonstrations in the dataset.
In [9] demonstrations of semantically meaningful behaviors
coupled with data-relabeling are used to initialize goal-
conditioned hierarchical policies. During RL for learning a
new task, the loss is augmented to keep the policies close to
the behavior encoded in the dataset.

Some works integrate demonstrations in the offline (or
batch) RL framework [14]. The authors of [10] enhance
the generalization capability of an offline RL algorithm, i.e.,
conservative Q-Learning (CQL) [15], using a dataset of prior
experience unrelated to the new task. In [11] a behavior prior
is learned from an imperfect dataset of multiple tasks and is
used to avoid that the policy chooses actions not supported
by the data.

B. Data Collection Systems

Machine-generated demonstrations are a tempting idea to
generate datasets. In [11] an agent is trained with Maximum
a posteriori Policy Optimization (MPO) [16] and roll-outs
of the final policy are collected to build a dataset. Another
way to collect machine-generated demonstrations is through
the use of scripted policies, as it is done in [6] and [10].
However, humans are more suitable for collecting a wide set
of semantically meaningful and natural behaviors, which is
harder to guarantee for machine-generated data.

The works in [8] and [9] use MuJoCo HAPTIX [17]
as data collection system. The authors of [17] propose to
augment the MuJoCo simulator [18] with a system that en-
ables teleoperation using real-time motion capture (MoCap)
of arm and hand movements, coupled with a stereoscopic
monitor for visual feedback. This is combined with head-
tracking to show the virtual environment always from the
human viewpoint. This system is employed also in [7]
and [19], where the former uses a dataset created in [20]
while the latter exploits behavioral cloning to augment the
dataset collected in [21] with an updated version of MuJoCo
HAPTIX.

The authors of [22] aim at building an inexpensive teleop-
eration framework that allows intuitive robotic manipulation
and collection of high-quality demonstrations. They come up
with a system that uses a VR headset to let the user perceive
the environment through the robot’s sensor space and control
it with motion-tracked VR controllers. A similar system is
used also in [23], where the demonstrations are collected in
a virtual environment, and the demonstrator sees a rendering
of the same observations of the agent and records actions
through an HRC Vive interface. In contrast, in order to use
kinesthetic teaching while avoiding human presence in the
robot scene, in [24] a robot kinesthetically force controlled
by a human is used to teleoperate the same robot type in
simulation or in the real world.

In [25] RoboTurk is developed, a crowdsourcing platform
for 6 degrees-of-freedom (DoFs) trajectory-based teleopera-
tion. It allows the users to provide task demonstrations in a
virtual environment through their own mobile devices. The
system has the advantages of using a ubiquitous interface,
i.e., a mobile device, while being intuitive and sufficiently
precise.

While the works presented above are able to provide
movement demonstrations, they lack of the ability to produce
impedance signals, which is one of the main goals of our
work. In addition, some of them use expensive devices which
might not be affordable by some research lab (e.g. VR
headsets), another important requirement that we consider
here. In general, none of the systems has been designed
on purpose for demonstrations to be integrated in the RL
frameworks considered in this work. In section [II-Al we
further clarify these and other requirements for the design
of our data collection system.
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Fig. 2. Design concept of the proposed Tele-impedance System. (a) Tele-impedance interface, (b) Human side, (¢) Human visual feedback composed of
(from left to right) static camera view showing robot side and its workspace, wrist-mounted camera view, and feedback of the commanded translational

and rotational impedance.

III. METHODOLOGY
A. Data Collection System Requirements

The problem tackled in this work can be stated as that
of creating a data collection system for obtaining expert
demonstrations 7 of state-action trajectories such that i) it is
as suitable as possible for task-agnostic demonstration-based
RL methods, ii) the VICES action space [13] is chosen in
the problem formulation, and iii) the system is usable by the
widest possible range of researchers. The state in the problem
formulation can be of different nature, e.g. exteroceptive,
proprioceptive or a mix of the two. We consider the problem
where the state (or observation) consists of current end-
effector position, estimated interaction force at the end-
effector and views from cameras, with humans and robots
getting the same view.

To fulfill the three points aforementioned, we formulate
the following requirements developed according to insights
gathered from the works in Section [T}

o Simplicity. The larger and more various are the datasets,
the more the RL approaches considered will benefit
from them. Thus, the system should be easy and fast
to use.

o Accessibility. The system should be as much accessible
as possible, meaning that the tools used for implement-
ing it should be ubiquitous, low-cost, and thus easily
accessible for a research lab that starts from scratch.

o Compatibility. RL is often cast as the problem of learn-
ing visuomotor policies, i.e. motor policies conditioned
on images. In order to make the expert demonstrations
usable, they should be compatible with the interactions
of the agent with the environment during RL training.
Thus, firstly visual artifacts should be avoided in the
context of visuomotor policy learning. That is, the
humans should not be present in the scene during the
demonstration (e.g., in kinesthetic teaching) since they
will not be during agent training. Secondly, human
visual feedback and the images provided as input to
the robot’s policy should coincide in order to avoid that
the decisions taken by the human cannot be correlated
to the input image gotten by the robot (e.g., when the
robot’s view is obstructed but the human one is not).

e Intuitiveness. Human demonstrations represent more

natural and meaningful behaviour compared to
machine-generated ones, and could determine the
success of RL approaches. To retain this advantage,
user intuitiveness needs to be ensured. The interface
used determines how demonstrations are provided and
the feedback the humans receive. Both these aspects
play a key role in ensuring intuitiveness.

e Relaxed Precision. In the RL approaches considered,
expert demonstrations can provide a coarse indication
of what actions are worth to be taken in a state since
they aid learning for a new task by guiding exploration.
Therefore, framework precision can be slightly relaxed
as long as meaningful behaviors can be still provided.
In other words, the demonstrations are task-agnostic,
meaning that they are not supposed to be used to
learn the same task that is demonstrated, but to create
behavior priors for the RL agent that is learning a new
different task.

e VICES Action Space. The framework should be able to
command desired poses and Cartesian impedances to
the robot.

B. Data Collection Framework Design

Our data collection framework is depicted in Fig.
In particular, Fig. {b) shows all the components of the
framework, Fig.[2(a) enlarges and highlights the components
of the physical interface used by the human to teleoperate
the robot and Fig. [2Jc) depicts the visual feedback provided
to the human.

1) Desired Pose command: The desired end-effector pose
can be commanded to the robot through a MoCap system
that tracks directly the human hand, gaining intuitiveness.
Technologies based on wearable sensors, e.g., XSens based
on Inertial Measurement Units (IMUs), while highly precise
usually are not easily accessible (i.e. expensive). Contrarily,
some camera-based technologies are open-source, have ac-
ceptable precision, and cheap. In addition, accurately placing
sensors and calibrating them takes additional time, at the
expense of simplicity. Therefore, we opt for tracking a
polyhedron of ArUco markers similarly to the work in [26],
using an RGB camera and the open-source ArUco detect



algorithnﬂ The polyhedron of ArUco markers is attached
on top of an interface that is tightly grasped by the human
during teleoperation, both are 3D printed. One of the main
limitations is that the ArUco marker might be obstructed,
which would not happen with previously mentioned wearable
sensors. That is why we use a polyhedron of ArUcos and we
mount it on top of the interface grasped by the human.

Let C, A;, T and W}, be respectively the camera frame,
the ¢-th ArUco marker frame (: = 1,...,n with n+ 1 being
the number of faces of the polyhedron), the interface frame
located where the human grasps it, and the world frame
(fixed) on human side.

The polyhedron of ArUco markers is rigidly attached on
top of the interface far enough from the human grasping
point. This allows for a) making the ArUco markers more
visible to the camera and b) knowing the (constant) homo-
geneous transformation T' 4,7 from each ArUco frame to
the interface frame. Considering the i-th ArUco marker, the
ArUco detect algorithm provides an estimation of T'c 4,
while the constant transformation Ty, ¢ is known once
the camera has been fixed and calibrated. Therefore, the -
th ArUco marker provides the homogeneous transformation

%/th obtained as:

T,z =Tw,cTca,Taz (1)

Since only one camera is used, one ArUco marker is not
sufficient to command the desired pose when the desired
orientation changes. The polyhedron of ArUco markers can
circumvent this problem and can make the pose tracking
more robust.

Let ¢cpcy, be the position vector that goes from the
camera to the i-th ArUco marker expressed in the camera
frame, and let R¢ 4, be the rotation matrix describing the
orientation of the i-th ArUco marker with respect to the
camera. The third column of Rc4, is ce“z“i, that is the
z-axis of frame .A; expressed in frame C, which is the
one coming out perpendicularly from the ArUco surface.
In agreement with the considerations in [27] regarding the
pose ambiguity problem and accordingly to the heuristic
observations, we consider T'¢ 4, more reliable when the angle
between ¢pc 4, and —¢ e is small. We compute the cosine
similarity between c¢pc 4, and —cei as:

A,
—ce; " ¢ pC_Ai

= ——F———"— =cos¥b; 2)
A, iy
[=cez"llllepe.a,l

g

where 0; is the angle between the two vectors and «; € [0, 1].
Then, T'yy, 7 is computed as:

> T,z 3)

ilo >aqp,

Tw,z =

where aup, is a threshold below which T'¢ 4, is not consid-
ered. The higher n, the more robust the pose tracking of the
interface is. In this work we use n = 5, i.e. the polyhedron
used is a cube. As we will demonstrate in Section [V] this
choice is enough in our case to have a sufficiently precise

3http://wiki.ros.org/aruco_detect

pose estimation. We choose 6y, = arccos(ap,) = 50°
resulting in aip, ~ 0.64.

2) Desired Impedance command: Previous work has tried
to estimate the human impedance to transfer it to the robot,
in order to make commanding an impedance as natural,
intuitive, and precise as possible [28], [29]. However, for
estimating it precisely, sensors that measure human muscular
activity, e.g., electromyographic sensors (EMGs), are needed.
These sensors are not easily accessible, require calibration,
and should be worn by humans. Instead, we decide to use
resistive buttons. The pressure applied to them deforms an
internal resistance and causes a voltage signal change, which
in turn can be mapped to a change in the desired impedance.

Formally, we command a desired diagonal stiffness K, =
diag{kq} € RS*6, bounded between a minimum and a
maximum value, and the corresponding desired damping
D, = diag{d;} € RS*® is obtained through double
diagonalization formula:

dq=2-0.707 - \/ka. )

The buttons are connected to the interface that sends the
desired Cartesian impedance to the robot controller.

In the process of deciding how many impedance dimen-
sions the human expert should be able to command indepen-
dently, which corresponds to the number of buttons to include
on the physical interface, we observe that too many buttons
would degrade the intuitiveness of the framework. Hence,
we decide to consider a trade off between intuitiveness
and complexity and included only two buttons, one for
translational and one for rotational impedance.

3) Feedback Provided to Human and Other Commands:
When learning visuomotor policies for manipulation tasks, a
viable choice is to use a wrist-mounted camera and a static
camera recording the whole task workspace [30]. The views
of these cameras are provided as feedback to the human.
This choice could degrade intuitiveness (the cameras could
provide a non-functional view of the scene for the task
purpose) but the benefit in terms of compatibility outbalances
this negative aspect (human and robot should condition
actions on the same view). Another important feedback
is the interaction force of the robot end-effector with the
environment and the commanded impedance. The former is
provided by means of vibrotactile feedback generated by the
interface while the latter through visual feedback of progress
bars on the screen.

Additionally, the interface provides a touch screen where
we implement:

« A button to command the gripper (open/close).

« A button to deactivate and activate the teleoperation.

o A slider to command the scaling factor between the

leader and the follower movements.

C. Tele-Impedance Framework Components

According to the aforementioned design description, the
tele-impedance framework shown in Fig. 2] is implemented.
The diagram of Fig. [3]illustrates how all the final components
of the framework interact with each other. The interface uses
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Fig. 3. Block diagram of the tele-impedance framework. The human-
robot communication is obtained thanks to the tele-impedance interface (see
Fig.2) and visual GUIL The communication between the different hardware
elements according to the connections in the figure is done in ROS.

an M5Stack Core2] as a human-robot communication unit.
An ESP32 microprocessor manages the hardware compo-
nents of the interface and communicates with the robot via
WiFi. The human can regulate the impedance of the robot
with two Force Sensor Resistor (FSR). A module formed
by two voltage dividers with resistors of 3.3k2 is used as
the analog electronics of the FSR. The human can also
communicate with the robot through the M5Stack Core2
touch screen. In addition, the human receives feedback of the
task through the visual GUI, and vibrotactile feedback of the
force measure at the end-effector of the robot. More details
about the hardware components and assembly instructions
are included in the open repository of the framework.

D. Data Logging and Simulation Environment

An important feature for data collection systems for
learning applications is the autonomous data logging. We
include such feature in the code we open source, so that
states-action trajectories can be readily available once the
demonstration is terminated. In addition, we provide the
simulation environment used for the experiment presented
in the next section.

IV. EXPERIMENTS AND RESULTS

In order to validate the designed framework, we demon-
strate that a human expert is able to fulfill a highly interactive
task having well-defined impedance requirements when us-
ing our system. Since our framework is thought for collecting
data for learning applications, we perform the experiment in
simulation (gazeb(ﬂ} [31]. We opted for simulation because
training of RL agents for these tasks is usually performed in
simulation. The reason is that algorithms remain too sample
inefficient for training directly in real world, other than the
problem of safety and resetting of the environment. Then,
a sim-to-real transfer phase is usually needed afterwards. In

4https://docs.mSStack.com/en/core/coreZ
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any case, the proposed framework gives the user the freedom
to use it both in simulation or in real world.

A. Experiment

The experimental setup can be viewed in Fig. 2(b)-(c).
A human expert is asked to perform a peg-in-hole task
fulfilling specific impedance requirements. We use simu-
lated models of the RGB-D Realsense d435 cameras, one
mounted on the wrist of the robot and one fixed in front
of the robot workspace using OpenVico [32]. Peg and
hole are parallelepipeds of dimensions 50x50x 150mm and
56x56x150mm (width x depth x length), respectively. The
impedance requirements are as follows:

1) Keep a low impedance when reaching the peg in order

to reduce the impact due to possible collisions.

2) When carrying the peg, increase the impedance in
order to reject tracking errors due to the object’s
weight.

3) When carrying the peg close to the hole, keep a low
impedance to favor alignment and to avoid the arising
of high contact forces due to contact between the peg’s
and the hole’s sides.

4) When inserting the peg inside the hole, increase the
translational impedance to overcome friction and en-
able insertion while keeping low rotational impedance
to avoid rotating the peg when it is inside the hole.

ROS bagf] are used for data logging, which have been
widely used from researchers to record datasets, visualize,
label, and store them for future use.

B. Results

Fig. 4| depicts the results of the experiment. The human
expert completes the task successfully, as shown by the hole
and peg poses. In addition, the impedance requirements are
fulfilled. Despite the misalignment between the peg and the
hole at the beginning of the insertion, the interaction force
does not grow too high thanks to the low impedance. Later,
the high translational impedance enables the completion of
the insertion by easing the sliding of the peg into the hole.
Since the translational impedance is increased along all
directions, the contact force between the peg and the hole
grows.

V. CONCLUSION

We have shown that our framework allows us to readily
provide the successful demonstration of a peg-in-hole task
including impedance requirements. The successful comple-
tion of the task implies that the tracking performance of
our system is sufficiently precise for teleoperating the robot,
recalling that the human is able to compensate for small
tracking errors if provided with visual feedback. Datasets
of these demonstrations have the potential to merge the RL
approaches considered in this paper with an impedance-based
action space formulation like the VICES proposed in [13].

We have made our system accessible to the research
community hoping that it can advance research in the field

Ohttp://wiki.ros.org/Bags
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Top: excerpts of the visual feedback gotten by the human expert during the experiment. Bottom: plot depicting (from top to bottom) hole and

peg positions, hole and peg orientations, estimated external forces at the robot end-effector, translational Cartesian stiffness, rotational Cartesian stiffness,
desired and current end-effector position, and, desired and current end-effector orientation. In the first 27 seconds the end-effector is moved above the
peg with low impedance and the gripper is closed to grasp the peg. Then, the peg is carried above the hole with high impedance to command precise
motions despite the weight of the peg, and to reach a good peg-hole alignment before insertion. When the peg contacts the hole, the impedance is reduced
to avoid high contact forces due to small misalignments, and to obtain a natural alignment thanks to the high compliance. Finally, only the translational
impedance is increased to overcome the friction during insertion, while the rotational impedance is kept low to maintain alignment and avoid the generation
of excessive torques while the peg is into the hole.

of robotics for learning contact-rich manipulation tasks. The
cost of our system ranges between 200$ and 400$ depending
on the type of camera used (which is not required to provide
depth information) and excluding the cost of the computer.
Thus, it is much more cost effective and affordable than
other commercial MoCap systems (g, 300008$) or VR devices
(g 3000%). In future works, we plan to use our framework
to collect expert demonstrations to learn contact-rich tasks
using the RL approaches considered in this work.
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