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Abstract— Preserving and encouraging mobility in the elderly
and adults with chronic conditions is of paramount importance.
However, existing walking aids are either inadequate to provide
sufficient support to users’ stability or too bulky and poorly
maneuverable to be used outside hospital environments. In
addition, they all lack adaptability to individual requirements.
To address these challenges, this paper introduces WANDER, a
novel Walking Assistive omNi-Directional Exo-Robot. It consists
of an omnidirectional platform and a robust aluminum structure
mounted on top of it, which provides partial body weight support.
A comfortable and minimally restrictive coupling interface
embedded with a force/torque sensor allows to detect users’ in-
tentions, which are translated into command velocities by means
of a variable admittance controller. An optimization technique
based on users’ preferences, i.e., Preference-Based Optimization
(PBO) guides the choice of the admittance parameters (i.e.,
virtual mass and damping) to better fit subject-specific needs
and characteristics. Experiments with twelve healthy subjects
exhibited a significant decrease in energy consumption and
jerk when using WANDER with PBO parameters as well as
improved user performance and comfort. The great interpersonal
variability in the optimized parameters highlights the importance
of personalized control settings when walking with an assistive
device, aiming to enhance users’ comfort and mobility while
ensuring reliable physical support.

I. INTRODUCTION

Gait abnormalities due to illnesses or injuries are one of
the main causes of chronic disability in the elderly population
[1]. Their incidence varies greatly with aging as they occur
in approximately 35% of adults aged over 70 years [2] and in
72% of over 80 [3]. Consequent balancing and gait difficulties
may greatly affect the quality of life [3], restrict the personal
independence of those affected, and increase the risk of falls
and fall-related injuries [4]. As the proportion of the aging
population continues to grow, a corresponding rise in the
incidence of gait disorders and related problems is expected,
making them a major public health concern.

To restore, support, and preserve mobility among the
elderly, many mechanical structures and appliances for gait
assistance have been proposed (e.g. walkers and canes). Nev-
ertheless, the traditional tools suffer from several drawbacks
such as requiring sufficient force output to move and handle
the device, lack of adaptability with human motion and not
providing robust support for user stability.
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For this reason, in recent years, robotic-assisted devices
have attracted much attention as an alternative. Most of them
are typically in the form of a robotic cane or smart walker
composed of a mobile base and a holding handle [5]–[11].
Thanks to a combination of sensors and motorized wheels,
these systems can better accommodate users’ movements and
intentions. However, to be moved, they require users to apply
forces on the handlebars, and walking with this bound may
result in uncomfortable and non-physiological gait posture.
Moreover, they do not prevent vertical falls and, in case of
slipping, may not be robust enough to stop the fall.

These drawbacks have led to an alternative way of gait
assistive means i.e., overground walking platforms (OWPs)
[12]. Unlike cane or walker-based systems, an OWP provides
partial body weight support (BWS) by ensuring the user to
its structure with a system of harnesses thus does not require
the use of arms. Examples are the KineAssist [13], [14] or
the Andago V2.0 [15]. The latter, in particular, is a robotic
BWS system including a force/torque (FT) sensor coupled to
the person that, in combination with the motorized wheels,
allows the robotic system to follow the patient.

In healthcare institutions, this kind of device may mitigate
the physical effort of nurses and therapists [16] and empower
the workforce, which is limited due to the much higher
number of patients with respect to (wrt) medical staff. As
a result, rehabilitation patients are allowed to increase the
training dose and, in general, mobility can be supported for
impaired individuals. However, since OWPs were designed for
hospital environments, they have large dimensions and limited
maneuverability, making it difficult to use them elsewhere.

One possibility is to maximize the potential of robotic-
assisted devices for usage both in healthcare facilities and
at home. Domestic rehabilitation can complement and con-
tinue hospital programs, promoting better recovery in motor
capability as it facilitates patients to practice walking and
balancing tasks in their home [17]. On the other hand, many
old individuals, in general, suffer from a variety of adverse
psychosocial difficulties related to falling (e.g., fear, anxiety,
loss of confidence, etc.) that may result in activity avoidance,
social isolation and increasing frailty [18]. Hence, delivering
physical support with a home-oriented assistive platform may
be highly beneficial for promoting mobility in the elderly.

With this view, a reduced-dimensions platform named
MRBA is developed in [17]. The proposed user-following
algorithm tracks the person’s Center of Mass (CoM) with
respect to the robot. If the robot-CoM distance exceeds
a predefined threshold, the robot moves toward the user.
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Fig. 1. Overview of WANDER and its control framework schema including the preference-based optimization (PBO) of the control parameters.

Nevertheless, MRBA platform utilizes non-omnidirectional
wheels so the platform may require complex maneuvers for
simple movements, which could be uncomfortable for the
users. Omnidirectional mobility is highly desirable in OWPs
as it removes any restriction on the type of motion that
can be performed (e.g. walking sideways). In this direction,
[16], [19]–[21] proposed a novel omnidirectional assistive
platform. The latter is provided with an admittance controller
that, compared to user-following algorithms, guarantees a
smoother human-robot interaction. As in the case of the
Andago system, this platform needs an FT sensor coupled
with the patient for measuring the user’s forces, which are
converted into the desired velocity by the admittance model.
This dynamic relationship is highly affected by the choice of
the admittance controller parameters. In [19], the latter are
empirically selected with a trial and error approach, while
in [20] and in [21], they are optimized to maximize the
sensitivity of the coupled human-robot system. Nevertheless,
in all the mentioned works, the parameters remain unchanged
for all the users of the platform. The type of assistance
required by a patient may vary depending on his/her age,
weight, and height, the type and severity of the pathology,
the level of support the user wants to receive, and the level
of stability he/she wants to perceive while using a walking
aid. This wide range of interpersonal differences makes the
establishment of different customized control parameters
crucial to cater to the needs of each individual.

This study introduces WANDER, a novel Walking Assistive
omNi-Directional Exo-Robot1 with a personalizable controller.
It consists of a mobile omnidirectional platform that ensures
free movements on the ground, a robust BWS aluminum
structure on top of it, and a comfortable and minimally
restrictive coupling interface provided with an FT sensor
to detect the users’ intentions. The controller includes an
admittance interface to map the user-generated forces to

1An exo-robot is an external stand-alone robot that supports and stabilizes
the human body during stances and movements.

the WANDER’s base velocity references. To personalize the
parameters of this controller, thereby enhancing the mobility
and comfort of each user while simultaneously preserving the
platform’s proficiency in providing reliable physical support,
we propose an optimization technique named Preference-
Based Optimization (PBO). The developed PBO tunes the
admittance parameters on-the-fly, based on the subject-
specific requirements and preferences while using the system.
To evaluate WANDER’s effectiveness in reducing energy
consumption and jerk while maximizing user performance
and comfort against the existing approaches, we conducted
experiments with twelve subjects. The rest of the paper is
organized as follows. In Sec.II, an overview of WANDER
and its control framework is provided. Sec. III and Sec. IV
explain the PBO method and the experimental procedure
conducted to evaluate it, respectively. In Sec. V, the results
are presented and discussed. Sec. VI draws the conclusions.

II. EXO-ROBOT FOR WALKING ASSISTANCE

In this section, we provide an overview of WANDER
and the control system developed to ensure smoothness and
transparency with human movements.

A. Hardware Overview

The proposed exo-robot is shown in the green block in
Fig. 1. Its base consists of a velocity-controlled Robotnik
SUMMIT-XL STEEL mobile platform with three degrees of
freedom (DoFs), i.e., able to move in longitudinal and lateral
directions and rotate in place. A structure of aluminum profiles
is mounted on top of the mobile base and a LaxOne 6-axis FT
sensor (Bota Systems, Zürich, Switzerland) is assembled in
the middle of the horizontal profile. The FT sensor is placed
between the structure and the user, who is rigidly coupled to
it through a lumbar support at the pelvis level. By means of
this pelvic interface (sensor + lumbar support), the forces and
torques exerted by the user on the platform can be detected.
Its vertical location on the structure can be adjusted to fit
the height of each individual. The range of measurement is
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equal to 4000 N in the direction perpendicular to the torso,
and 1800 N along the others (e.g., weight support), while the
resolution is about 300 mN and 400 mN, respectively. The
overall dimensions of WANDER are 97.8×77.6×51 cm and
the weight is 150 kilograms. WANDER is also equipped with
a reliable wireless emergency button.

B. Control System
The user’s intention in terms of force/torques (detected by

the FT sensor) can be translated into desired velocities for the
platform through an admittance controller (see the blue block
in Fig.1), making the robot compliant with human motion.
The underlying dynamic relationship can be described by the
following admittance model

Madmq̈des
m +Dadmq̇des

m = Text
m , (1)

where m = 3 is the number of DoFs, representing two
translational and one rotational movement of the base.
q̈des

m and q̇des
m are the desired accelerations and velocities,

respectively. Text
m = [Fx,Fy,τz] are the detected external forces

and torques, that are extracted and mapped from the 6D FT
sensor data. Madm and Dadm are the diagonal positive definite
matrices of virtual mass and damping in Cartesian coordinates

Madm =

Mx 0 0
0 My 0
0 0 Jz

 , Dadm =

Dx 0 0
0 Dy 0
0 0 Dz

 ,

where Mx,y and Dx,y are mass and damping in the horizontal
axes, Jz is the moment of inertia and Dz is the rotational
damping. In this paper, the robot should be freely moved by
the user and maintain its position if no forces are applied.
This is why we omit the stiffness term in the admittance
model presented in Eq. (1).

To reduce the interaction forces that the users have to apply
to move the platform and thus facilitate their movements, less
resistance along the direction of motion should be experienced.
For this reason, a direction-based variable admittance con-
troller is developed. The motion direction vector is computed
according to the FT sensor measurements and expressed as
ρm = Text

m /|Text
m |. The corresponding projection matrix in the

direction of ρm is then calculated as in [22]

Dmot =
ρmρT

m

ρT
mρm

. (2)

The initial damping matrix Dadm can be decomposed as{
D∥ = DmotDadm
D⊥ = I −DmotDadm

(3)

where D∥ and D⊥ are the parallel and perpendicular compo-
nents to the direction of motion, respectively. The damping
matrix in Eq. (1) can be thus expressed as

D⋆
adm = D⊥+ηD∥ =

[
I − ρmρT

m

ρT
mρm

+η
ρmρT

m

ρT
mρm

]
Dadm, (4)

where η ∈ [0,1] is a proportional coefficient to reduce the
damping in the direction of motion thus facilitating the users’
movements [22]. Eq. (1) is then rewritten accordingly as

Madmq̈des
m +D⋆

admq̇des
m = Text

m . (5)

Given the above-defined controller, to maximize the users’
perception of mobility and comfort while using WANDER, a
suitable set of mass and damping parameters must be selected.

III. PREFERENCE-BASED OPTIMIZATION

In this section, we introduce the PBO method (see the
orange block2 in Fig.1) to select the best set of admittance
controller parameters (mass and damping) based on each
user’s qualitative feedback while using WANDER.

For some optimization problems, defining a cost function
f is not feasible. Instead, it is possible for a user to iteratively
express a preference between two different experimental
conditions. The observed preferences can then be used to
iteratively learn a surrogate function f̂ : Rn → R, which tries
to approximate the (unknown) function f . This is the principle
underlying the global optimization based on active preference
learning (GLISp) algorithm proposed in [23], and also used
in [24], [25], which is adopted in this paper.

Specifically, at each iteration, a set of mass and damping
parameters xi = {Mi, Di} ∈ R2 is proposed to the user, who
is asked to test it (by walking with the assistive platform)
and compare it to another set x j, expressing a preference π

between the two. After H = N −1 iterations, N ≥ 2 sets of
parameters x included in X = [x1, ...,xN ]∈RN×2 are generated
with xi,x j ∈ R2 such that xi ̸= x j∀i ̸= j, i, j = 1, ...,N.

Given two sets of parameters (xi,x j), the link between
preferences π and the objective function f can be simply
stated as follows

π(xi,x j) =


−1 if f (xi)< f (x j): xi preferred to x j,

0 if f (xi) = f (x j): xi comparable to x j,

+1 if f (xi)> f (x j): x j preferred to xi.
(6)

The expressed preferences are sequentially added in a
preference vector B = [π(x1,x2), ...,π(x,x⋆N)] ∈ {−1, 0, 1}H

until the iteration Hmax = Nmax −1 is reached. When the user
has tested N sets of parameters, the best value up to the
corresponding iteration H is denoted as x⋆N . As the iterations
grow, the algorithm is expected to approach the global optimal
set of parameters.

A. Surrogate function

The surrogate function f̂ is parametrized as the following
linear combination of Radial Basis Functions (RBFs)

f̂ (x) =
N

∑
k=1

βkφ(γd(x,xk)), (7)

where d : R2 ×R2 → R is the squared Euclidean distance

d(x,xk) = ||x− xk||22,

φ : R → R is an RBF, γ > 0 is a scalar hyper-parameter
defining the shape of the RBF, and βk are coefficients that
are determined as explained below. Examples of RBFs are
φ(γd) = 1

1+(γd)2 (inverse quadratic) and φ(γd) = e−(γd)2
,

2The graphs in the orange block representing f̂ (x) and z(x) are taken
from [23] and illustrate generic functions with an explanatory purpose.
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(Gaussian), see more in [23]. According to the preference
relation in Eq. (6), f̂ has to satisfy the following constraints

f̂ (xi)≤ f̂ (x j)−σ if π(xi,x j) =−1,

f̂ (xi)≥ f̂ (x j)+σ if π(xi,x j) = 1,

| f̂ (xi)− f̂ (x j)| ≤ σ if π(xi,x j) = 0,

(8)

where σ > 0 is a scalar that avoids the trivial solution f̂ ≡ 0.
Based on the above constraints, the coefficient vector β

describing the surrogate f̂ is obtained by solving the following
convex Quadratic Programming (QP) problem:

min
β ,ε

H

∑
h=1

εh +
λ

2

N

∑
k=1

β
2
k for h = 1, ...,H (9)

s.t. Λ ≤−σ + εh, if π(xi(h),x j(h)) =−1

Λ ≥ σ − εh, if π(xi(h),x j(h)) = 1

|Λ| ≤ σ + εh, if π(xi(h),x j(h)) = 0

with Λ =
N

∑
k=1

(φ(γd(xi(h),xk)−φ(γd(x j(h),xk))βk,

where λ > 0 is a scalar that guarantees uniqueness in the
solution of the QP problem, h is the iteration index and εh is
a positive slack variable that is used to relax the constraint
imposed by Eq. (8) by varying the iteration.
The following procedure is then considered:

i) generate a new sample by pure minimization of the
surrogate function f̂ defined in Eq. (7)

xN+1 = arg min f̂ (x) s.t. ℓ≤ x ≤ u

with β obtained by solving the QP (9), where ℓ and
u∈R2 are the lower and upper bounds for x, respectively;

ii) ask the user to express a preference π(x⋆N ,xN+1) and
update f̂ accordingly;

iii) iterate over N until Nmax.
However, purely minimizing the surrogate function (exploita-
tion) may lead to converging to a set of optimal parameters
x⋆N that is not the global minimum [23]. An exploration
objective must be also considered to sample other areas of
the feasible domain. Such a balance between exploration and
exploitation is addressed by defining a proper acquisition
function a : R2 → R, which is minimized instead of the
surrogate function f̂ (x). The exploration contribution inside
the acquisition function is given by the so-called Inverse
Distance Weighting (IDW) function defined below.

B. Inverse Distance Weighting function

To perform the exploration of regions of R further away
from the current best solution in the early iterations and
reduce its effect as the number N of tested sets increases, the
following IDW function [26] is used

zN(x) =

(
1− N

Nmax

)
tan−1

(
∑

N
k=1 wk(x⋆N)

∑
N
k=1 wk(x)

)
(10)

+
N

Nmax
tan−1

(
1

∑
N
k=1 wk(x)

)
for x ̸∈ X and zN(x) = 0 otherwise, where wk(x) = 1

d(x,xk)
2 .

C. Acquisition function optimization

Given an exploration parameter δ ≥ 0 the acquisition
function a : R2 → R per set N is then constructed as

aN(x) =
f̂ (x)
∆F̂

−δ zN(x), (11)

where ∆F̂ is the range of the surrogate function given X

∆F̂ = max
k

{ f̂ (x)}−min
k
{ f̂ (x)}

that is used in Eq. (11) as a normalization factor to simplify
the choice of the exploration factor δ ∈ [0,1]. Given a set
of samples X and a preference vector B, the next set of
parameters xN+1 to be tested is computed as the solution of
the (non-convex) optimization problem

xN+1 = argmin
x∈X

aN(x). (12)

In particular, the Particle Swarm Optimization (PSO) algo-
rithm of [27] is used to solve Eq. (12).

IV. EXPERIMENTS

This section presents the experiments conducted to validate
the PBO method performance in the selection of the optimal
admittance parameters for the control of WANDER.

A. Experimental protocol

Twelve healthy volunteers, six males, and six females,
(age: 28.08±2.31 years; mass and height in Tab. II), with
no history of walking and balance disability, were recruited
for the experiments. 3 Prior to the experiments, the pelvic
interface was adjusted according to each participant’s height.
Then, the subjects were connected through it to the platform
to obtain a rigid coupling without affecting the users’ comfort.
The experimental procedure consisted of two different phases.

1) Optimization: In this phase, the optimal admittance
controller parameters were obtained for each participant by
using the PBO method. At each iteration, subjects were asked
to express a preference between two different sets of mass
and damping (xi,x j) applied on-the-fly to the controller. To
test them, they could move freely in the experimental area,
coupled to the platform, without following a predefined path.
However, they were instructed on the movements that better
highlight differences between conditions (e.g., repeating the
exact same movements with each set) and encouraged to prove
critical situations (e.g., to abruptly start and stop walking).

2) Evaluation: This phase aimed to verify the PBO method
performance. A comparison was made between the subject-
specific set of mass and damping parameters obtained by using
PBO and two other sets taken from the literature. Specifically,
we considered LT1: [M = 10 kg, D = 120 Ns/m] from [16],
[19] and LT2: [M = 33 kg, D = 72,6 Ns/m] from [21]. A
within-subjects experiment in which each participant went
through all three experimental conditions (i.e., LT1, LT2,
and PBO parameters) was performed. In each condition,

3The protocol was approved by the ethics committee Azienda Sanitaria
Locale (ASL) Genovese N.3 (Protocol IIT HRII SOPHIA 554/2020).
Written informed consent was obtained from the participants.
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TABLE I
PARAMETERS SELECTED FOR THE CONTROLLER AND PBO.

Parameter Value Rationale

Jz 0.33Mx,y Empirical
Dz 0.33Dx,y Empirical
η 0.7 Empirical
Mx,y ∈ [10, 100] 9% of system mass [28], Empirical
Dx,y ∈ [40, 200] Empirical
Hmax 15 Empirical
RBF function Gaussian Library default values
γ∗ 3.0 Library default values
δ 0.5 Library default values
σ 1000 Library default values

∗ γ was recalibrated at h = 9 to improve the GLISp performance

subjects were asked to follow a predefined path, i.e., the
tracks represented in Fig. 2, which were chosen to allow
the exploration of all the possible movements that can be
performed with the platform. The specific values selected for
the parameters defined in Sec. II and Sec. III are reported in
Tab.I. To implement the PBO method (Sec. III), we adapted
the library proposed in [23], [26], [29].

B. Experimental analysis

For the optimization phase, the correlation between each
subject’s weight and the mass obtained with PBO was
estimated by using the Pearson coefficient. For the evalu-
ation phase, both quantitative and qualitative metrics were
employed and statistical analysis was conducted to test the
significance of the results. Specifically, the Wilcoxon signed-
rank test was used for pairwise comparisons between the
three conditions with a significance level equal to 0.05.

1) Quantitative metrics: To evaluate the transparency
and smoothness of WANDER assistance, respectively, two
indicators were defined. The first (for transparency) is the
required energy per unit distance (the lower, the better),
which comprises the linear energy EL for forward/backward
and lateral movements and angular energy EA for rotational
movements, respectively

EL =

∫ s
0 |F |ds

s
, EA =

∫
θ

0 |τz|dθ

θ
,

where s is the total linear path and θ is the total angular
rotation performed during the task’s execution.

forward/backward left/right “8” shape trunk rotation

4.2 m

3.6 m

Fig. 2. Path followed by the users during the evaluation phase.

TABLE II
PARTICIPANTS’ HEIGHT, WEIGHT, AND PBO PARAMETERS (M,D).

Subject Height [cm] Weight [kg] PBO M [Kg] PBO D [Ns/m]

1 180 80 85.00 105.00
2 178 70 74.30 86.00
3 158 48 81.26 40.00
4 183 81 68.65 57.00
5 163 61 90.00 40.00
6 194 98 100.00 40.00
7 155 42 42.30 40.00
8 159 65 86.95 75.80
9 173 77 68.44 57.54
10 176 60 72.74 66.20
11 160 49 44.80 40.00
12 172 64 89.84 62.88

The second (for smoothness) is the mean value of the module
of the jerk

Jmean =
∑

L
l=0

√
J2

x (l)+ J2
y (l)

L
, (13)

where the jerk in the horizontal directions is defined as [30]

Jx =
d3qx

dt3 =
dq̈x

dt
, Jy =

d3qy

dt3 =
dq̈y

dt
.

l iterates the acceleration samples collected from the mobile
base and L is the total number of samples.

2) Qualitative metrics: At the end of each experimental
condition, participants were asked to fill in the NASA-TLX
[31] to rate perceived workload to vary controller parameters.

V. RESULTS AND DISCUSSION

This section presents and discusses experimental results.

A. Experimental results

1) Quantitative metrics: In Tab. II, the optimised param-
eters found with PBO are presented for each subject. A
statistically significant correlation equal to 0.59 (p-value
p = 0.0416) was found between the users’ weights and the
masses employed for the admittance controller. In Fig. 3, the
boxplots of the angular energy, linear energy, and jerk, for all
the subjects, are presented in the three tested conditions (LT1,
LT2, PBO). By using the PBO method, the linear energy was
significantly decreased on average by 17,61% wrt to LT1 and
by 13.93% wrt LT2. The angular energy was significantly
reduced in PBO wrt LT1 by 13.26% while it remained almost
the same in PBO wrt LT2, with a non-significant increase of
3.57%. The mean jerk was not significantly reduced in PBO
wrt LT1 by 1.12% while the decrement of 5.95% between
PBO and LT2 was statistically relevant.

2) Qualitative metrics: In Fig. 4, the boxplots of the
NASA-TLX parameters for all the subjects are reported in
all the experimental conditions (LT1, LT2, PBO). By using
the PBO parameters, the workload perceived by the user was
significantly decreased in terms of physical demand, effort,
and frustration and increased in terms of performance.
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Fig. 3. Results of the linear energy, angular energy, and jerk, for all the subjects in the three experimental conditions (LT1, LT2, PBO). By using WANDER
with PBO parameters, a jerk profile comparable to a very damped system and a lower energy profile comparable to a lightweight system can be obtained,
providing the capabilities of the PBO method in finding optimal parameters. ∗ stands for p < 0.05.

Fig. 4. Results of the NASA-TLX for all the subjects in the three
experimental conditions (LT1, LT2, PBO). The boxplots for mental demand
(MD), physical demand (PD), temporal demand (TD), performance (P), effort
(E), and frustration (F) are presented. ∗ stands for p < 0.05.

B. Discussion

As reported in Sec. V-A, while the linear energy was sig-
nificantly reduced by using PBO parameters, the differences
among conditions are not relevant for the angular energy.
This may be due to the higher variability of the rotational
movements performed by the users. Indeed, while the linear
movements (back/forth, right/left) were easily replicable by
all the subjects, rotational movements (as the “8” shape path)
were often conducted in different ways (e.g., with tighter or
wider curves, more or less rotation in place). This suggests
the need for more rigorous experimental protocols to test
WANDER in different conditions.

Regarding the jerk, it is worth noticing that the LT1
parameters were expected to feature the lowest values, given
the highest damping wrt the other conditions. However, the
jerk obtained with PBO parameters is comparable to the one in
LT1. A positive outcome is also provided by the NASA-TLX,
since PBO parameters allow to decrease several indicators.
The fact that, by using WANDER with PBO parameters, we
obtained a jerk comparable to a very damped system (LT1),
reduced energy, and a milder perceived workload, proves
the capabilities of the proposed method in finding optimal
parameters. Hence, we can assert that PBO guarantees an
overall better performance wrt to LT1 and LT2 both from a
quantitative and qualitative perspective.

In addition, by analyzing the PBO parameters reported
in Tab. II, it is evident that each user requires different
controller parameters, which interestingly exhibit a medium-
high correlation with the body characteristics. This highlights
the need for customised and user-specific control settings to
better fit individual requirements and demonstrate the benefit
of the proposed preference-based approach.

VI. CONCLUSION

This work introduced WANDER, an omnidirectional plat-
form with personalized control settings for assisting indivi-
duals during walking. Many existing solutions are suitable
only for use in care facilities and often lack adaptability to
user-specific needs. WANDER has been devised to address
these challenges, offering compact dimensions for a more
versatile use and a control system that can be tailored to
the individual requirements of each user. Results prove the
effectiveness of user preference-based control parameters in
reducing energy and jerk while maximizing user performance
and comfort against fixed parameters found in the literature.

However, this very first version of WANDER presents
some limitations. The dynamic interaction between the human
and the platform’s non-rigid coupling element introduces
complexities beyond our current model’s scope. Addressing
this in future iterations of our work will enhance the system’s
response. Also, to enhance the smoothness of human-robot
motion, anticipatory direction prediction will be integrated
into the variable admittance controller and the inclusion of
parameters Jz, Dz, and η in the optimization process will be
considered. Finally, while this first work focused on enhancing
the users’ mobility and comfort, the next step will be to use
WANDER for balance and gait assistance. Additional sensors
will be integrated into the platform (e.g., lidar and pressure
insoles) to monitor the user’s lower limbs. The detection
of possible gait anomalies will enable control strategies to
recover balance, preventing falls. In this case, the validation
will involve the execution of some daily life activities (e.g.
sitting on a chair, obstacle avoidance, working on a hob) to
prove WANDER portability, dexterity, and applicability in
the real world.
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