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Abstract— This paper presents a framework to navigate
visually impaired people through unfamiliar environments by
means of a mobile manipulator. The Human-Robot system
consists of three key components: a mobile base, a robotic
arm, and the human subject who gets guided by the robotic
arm via physically coupling their hand with the cobot’s end-
effector. These components, receiving a goal from the user,
traverse a collision-free set of waypoints in a coordinated
manner, while avoiding static and dynamic obstacles through
an obstacle avoidance unit and a novel human guidance planner.
With this aim, we also present a legs tracking algorithm that
utilizes 2D LiDAR sensors integrated into the mobile base to
monitor the human pose. Additionally, we introduce an adaptive
pulling planner responsible for guiding the individual back to
the intended path if they veer off course. This is achieved by
establishing a target arm end-effector position and dynamically
adjusting the impedance parameters in real-time through a
impedance tuning unit. To validate the framework we present a
set of experiments both in laboratory settings with 12 healthy
blindfolded subjects and a proof-of-concept demonstration in a
real-world scenario.

I. INTRODUCTION

In recent decades, collaborative robotics has experienced
noteworthy advancements. We have transitioned from con-
fining industrial robots within safety enclosures, where any
physical interaction with humans was banned, to a scenario
where robots seamlessly collaborate with humans, even when
contacts occur [1], [2]. In many contemporary applications,
human-robot physical contact is not only allowed but re-
quired in various tasks. Rehabilitation applications are a
representative illustration of this premise [3]–[5]. Advanced
flexible manufacturing also demands physical Human-Robot
Interaction (pHRI) for many Human-Robot Collaboration
(HRC) tasks, such as collaborative transportation of ob-
jects [6], [7] or conjoined actions for heavy tasks [8].
Search-and-rescue robotics also benefits from it for casualties
extraction in disaster areas [9] or limbs manipulation [10].
Nevertheless, assistive and healthcare robotics is presumably
the most interesting application, where the number of works
employing this approach is growing notably [11]–[16].

The development of assistive robotic systems to guide
the visually impaired is an important application that could
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Fig. 1. Visually impaired people are navigated through an unfamiliar
environment by means of a mobile manipulator. By tracking the human
pose in the workspace and tuning online the impedance parameters at the
point of interaction, the framework ensures a collision-free path planning.

benefit significantly from advances in this field [17]. Some
works have presented robotic solutions to this particular
topic. In [18]–[21], different versions of robotized white
canes that can assist in visually impaired guidance are
proposed. More recently, the use of legged or dog-like robots
is being studied [22]–[24]. This application has also been
recently considered with aerial robots [25]. However, to
the best of the authors’ knowledge, the use of a mobile
robot with a manipulator for this application has yet to be
explored. Exploiting the loco-manipulation capabilities of a
mobile manipulator is crucial for guidance in labyrinthine
environments or corridors with recesses or tight turns.

In this work, we propose a novel pHRI framework that
enables a mobile manipulator to plan and execute a trajectory
exploiting the loco-manipulation skills to navigate a visually
impaired person in an unknown environment (see Fig. 1).
One significant advantage of personal mobile robots is that
they can provide greater assistance in daily living activities,
due to their manipulation capacity. For instance, the mobile
base can be used for carrying heavy loads, and the robotic
arm can be exploited to open doors or pick items that
lie out of the human workspace. This framework aims to
enhance the independence of visually impaired people, and
this platform is meant to be a constant helper that can
accompany the users to carry out their daily activities.

The core of this work and its main novelty relies on
a guidance planner that ensures a collision-free path for
the HRI system composed by the robot and the physically
coupled user, exploiting an adaptive pulling vector that
through physical guidance indicates to the user the path to
be followed. This is achieved by tracking the human leg
movements in the robot surroundings, and commanding the
arm end-effector pose and impedance parameters.
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Fig. 2. The software architecture of the presented framework includes human tracking (yellow), planning algorithms (blue), and control methods (green).
Every unit functions as a ROS node, and information is communicated through ROS messages along the illustrated ROS topics (indicated by dotted lines).

The default behavior of the robotic arm is to keep a
compliant profile on the lateral axis until the human does not
veer off the desired path. In fact, robots with lower stiffness
are often perceived as safer by humans [26]. Humans tend
to feel more secure when they believe the robot can adapt
to unexpected situations without causing harm. This can be
relevant to our study since undesired end-effector movements
may be generated due to the external disturbances, planning
uncertainties, and imperfect de-coupling of the base and arm
movements from the end-effector trajectories. Hence, when a
robot is compliant and can yield to external forces, it reduces
the risk of accidental collision or unexpected interaction.
Lower stiffness has also shown to increase the feeling of
dominance by the individuals interacting with robots [27].
Conversely, robots with high stiffness can be seen as poten-
tially more dangerous. If a robot is rigid and unyielding, it
may not respond well to external forces, increasing the risk
of injury or discomfort for humans, simultaneously reducing
the feeling of dominance. As a result, individuals might be
cautious or hesitant when interacting with such robots.

II. METHOD

The main purpose of the proposed framework is to nav-
igate visually impaired people through an unknown envi-
ronment, thanks to the assistance provided by a mobile
manipulator. When the human subjects couple their hand
with the anthropomorphic robotic hand mounted as the
end-effector, the cobot starts pulling the person towards a
predefined goal while avoiding static and dynamic obstacles.
To do so, an adaptive pulling strategy has been designed to
shape both the desired end-effector pose and the impedance
parameter of the Cartesian impedance controller embedded
in the arm. This leads to a readjustment of the human pose
in the case an individual deviates from a safe, i.e., collision-
free, track shaped by the framework.

The required theoretical and technological components to
build such a framework are integrated into 8 modules, that
can be subdivided into three main categories: human track-
ing, planning algorithms, and control methods, as illustrated
in Fig. 2. The employed control techniques include (1) a

Cartesian impedance controller whose impedance parame-
ters can be tuned online by the (2) impedance tuning unit, (3)
a Cartesian admittance controller that commands the desired
velocity to the robot base, receiving as input the virtual
torques generated by the (4) virtual torques shaping unit.
The human tracking consists of (5) a legs tracker unit that,
by using 2D point cloud data, detects the human location
with respect to the robot. The planning algorithms involve
(6) an obstacle avoidance planner that dynamically generates
a trajectory for the mobile base able to ensure a collision-free
path, (7) an adaptive pulling unit that, based on the desirable
human pose and their actual one, shapes a 2D pulling vector
that determines if (8) the human guidance planner unit needs
to steer the robotic manipulator to bring back the human
subject on the desired generated track.
A. Cartesian impedance controller

In HRC tasks, Cartesian impedance control techniques
have demonstrated the ability to guarantee safe interactions
between the cobot and the human counterpart [2], being able
to achieve any arbitrary dynamic behavior at the robot end-
effector [28], [29]. This control technique relies on torque
sensing and actuation, with the vector of robotic arm joint
torques τA ∈ Rn calculated as follows:

τA = M(q)q̈ +C(q, q̇)q̇ + g(q)+ τ ext, (1)
τ ext = J(q)

T
F c + τ st, (2)

where n is the number of joints, q ∈ Rn is the joint angles
vector, J ∈ R6×n is the robot arm Jacobian matrix, M ∈
Rn×n is the mass matrix, C ∈ Rn×n is the Coriolis and
centrifugal matrix, g ∈ Rn is the gravity vector and τ ext is
the external torque vector. F c represents the forces vector in
the Cartesian space and τ st the second task torques projected
onto the null-space of J .

Forces F c ∈ R6 are calculated as follows:

F c = Kc(Xd −X) +Dc(Ẋd − Ẋ), (3)
where Kc ∈ R6×6 and Dc ∈ R6×6 represent respectively
the Cartesian stiffness and damping matrix, Xd and X ∈ R6

the Cartesian desired and actual poses, Ẋd and Ẋ ∈ R6 their
corresponding velocity profiles.



B. Impedance tuning

In [30], we introduced the principles of a self-tuning
impedance controller that allows the robot to precisely track
the desired trajectory along the motion vector, and at the
same time grants the flexibility to respond in a compliant way
along the other directions in order to gently adapt to external
unintended disturbances (e.g., obstacles). Building upon the
basis of this work, hereafter we introduce an extended
version of the algorithm that is capable of independently
regulating the impedance parameters along the three axes
of the impedance ellipsoid located at the robot end-effector
frame, whose axes are oriented in the direction of the motion
(ax), perpendicular to the direction of the motion and laying
on a plane parallel to the ground (ay), and orthogonal to the
ground (az). In the presented framework, the independent
impedance regulation along the aforementioned axes allows
the robot (i) to keep a stiff profile in the principal direction of
the movement guaranteeing the pulling of the human subject
towards the final goal through ax, (ii) to leave the freedom of
motion along the lateral axis when the human pose is tracked
to be within the collision-free path or to make it stiffer when
the robot needs to redirect the human on the right track (see
Sec. II-F) through ay , and (iii) to set a neutral profile on the
vertical axis to leave to the user the possibility to slightly
adapt the hand position in the vertical direction through az .

To this end, the translational component of the Cartesian
stiffness and damping matrices (symmetric and positive
definite) Kc,t ∈ R3×3, Dc,t ∈ R3×3 are defined as follows:

Kc,t = UΣkU
T , Dc,t = UΣdU

T , (4)

where the diagonal matrix Σk ∈ R3×3 and Σd ∈ R3×3 are
the desired stiffness and damping factors along the three axis
of the impedance ellipsoid. U ∈ R3×3 is the orthonormal
basis whose columns represent the axes defined above as
ax ∈ R3, ay ∈ R3, and az ∈ R3, and calculated as:

U = [âx, ây, âz] (5)
ax = xd,t − xd,t−1, (6)

ay = [−ax(y) ax(x) 0]
T , (7)

az = ax × ay, (8)
whereˆdenotes that the vectors have been normalized, xd,t

and xd,t−1 are the translational component of Xd at the
current and former control loop, and × represents the cross
product notation. Σk and Σd are defined by:

Σk = diag(kx, ky, kz), Σd = diag(dx, dy, dz), (9)

where kx, ky , and kz represent the desired stiffness values
to be projected on the U basis axes. The corresponding
damping values are computed as di = 2ζ

√
ki with i ∈

(x, y, z) [31].

C. Cartesian admittance controller

Robotic mobile platforms can be controlled by means of
a velocity-based control and a high gain can be set in the
low-level velocity controller. This means that the dynamics
of the mobile platform can be omitted and any external
dynamic effect from the manipulator can be ignored. With

the aim of commanding the base movements based on the
user interaction with the robot, a force-torque interface is
preferred. To map the high level torques computed by a
virtual torque controller into suitable velocities for the base,
an admittance controller is used. The number of Degrees of
Freedom (DoF) m = 3, as the mobile platform can move
along the X-axis, the Y-axis, and rotate about the vertical
axis (yaw). The dynamics of the mobile platform, with virtual
joints qB ∈ Rm can be described by:

Madmq̈des
B +Dadmq̇des

B = τ vir
B + τ ext

B , (10)
where Madm ∈ Rm×m and Dadm ∈ Rm×m are the
virtual inertial and virtual damping, q̇des

B ∈ Rm is the
desired velocity sent to the mobile platform, τ vir

B ∈ Rm and
τ ext
B ∈ Rm are the virtual and external torque, respectively.

The virtual torques vector is composed by linear forces on
the x- and y-axis and rotational torques around the z-axis,
and it is defined as:

τ vir
B = [fx, fy, µz]

T . (11)
Considering the sampling time ts, the desired velocity q̇des

m

can be obtained by substituting q̈des
m (t) = t−1

s (q̇des
m (t) −

q̇des
m (t− 1)) as:

q̇des
m (t) =(t−1

s Madm +Dadm)−1 (12)

(τ vir
B (t) + τ ext

B (t) + t−1
s Madmq̇des

m (t− 1)).

D. Legs tracker

Monitoring the human’s position relative to the robotic
platform is essential for effective guidance, as depicted in
Fig. 2. Mobile robots are usually equipped with a diverse
range of sensory systems, offering numerous options. Ulti-
mately, we selected a laser scan-based solution due to its
superior performance in terms of frequency, computational
efficiency, and angle coverage. The first step consists of
filtering the laser point cloud data using a passthrough filter
based on user-defined angle and distance ranges to discard
noise and background objects. Subsequently, the system
employs a DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) algorithm to identify clusters within
the laser data, representing potential objects or obstacles.
It is important to note that this tracking algorithm aims
to associate new centroids with previously tracked ones
based on their proximity and coherence, allowing the system
to follow objects as they move through the sensor’s field
of view. The coherence threshold parameter, defines the
maximum allowed distance between a new centroid and the
existing tracked objects. The method filters out the centroids
that do not meet this coherence criterion before registering
them as tracked objects. Given that in our experiments, we
do not observe significant high accelerations, we decided to
set the coherence threshold to a sufficiently restrictive value,
such as 0.2 meters. The legs’ centroids position are then
averaged to define the current human pose frame (ΣH ).

E. Obstacle avoidance

Since the proposed framework is meant to be deployed in
unstructured environments with static and dynamic obstacles,



it needs to generate a collision-free path for both the mobile
base, the robotic arm, and the human subject.

To this end, we decided to implement an obstacle avoid-
ance algorithm capable of preventing collisions with both
fixed and moving agents. The method is based on the Robot
Operating System (ROS) package “move base” [32], using
the ROS Global Planner along with the TEB (Timed-Elastic-
Band) local planner [33]. This is done by updating a cost
map fusing the data perceived by perception sensors, such
as lasers and cameras, and the odometry information. Given
as input the base goal pose XB goal, the algorithm generates
a vector containing a list of target waypoints, XB targets,
to be reached by the mobile base. It is important to notice
that, this package is usually exploited to directly input to the
base the velocity commands, while in this framework the
virtual torques shaping unit is responsible of generating the
base virtual torques that are translated into velocities by the
Cartesian admittance controller.

F. Adaptive pulling

The goal of the adaptive pulling module is to prioritize
the safety of the human by keeping their position within the
robot’s collision-free trajectory. To achieve this, this module
generates a vector for pulling the human towards the path
to be followed. In order to calculate the pulling vector, the
desired human pose frame (ΣH des) and the current human
pose frame (ΣH ) are utilized. The translation between these
two frames (lH des

H ), with lx and ly corresponding to its x and
y components, represents how much the human’s actual pose
deviates from the desired one. This deviation is exploited to
derive the pulling vector as follows:

−→p = [−lx,−ly]
T . (13)

To ensure safety and prevent the robot from exceeding
its operational limits, the pulling vector is saturated by the
following rule:

−−→
psat =


−→p , if ||−→p || ≤ 1
−→p

||−→p ||
, else

. (14)

As explained in more detail in Sec. II-G, the X-axis of
the ΣEE and, consequently, the ΣH des are always aligned
with the direction of movement (see Fig. 2). Hence, the X-
axis of the ΣH des points to the direction of motion, and
its Y-axis is parallel to the ground plane and orthogonal to
the motion direction. Therefore, both the robot’s torque gain
(αB) and the required adjustment of the end-effector’s pose
(yA adaptive) are calculated by using

−−→
psatx and

−−→
psaty which

denote x and y components of the
−−→
psat vector, respectively.

For the calculation of αB the following function is used:

αraw = −
−−→
psatx

dstop
+ 1 (15)

αB =

{
1, if 1 ≤ αraw
αraw, if 0 ≤ αraw ≤ 1
0, else

, (16)

where dstop is the saturation distance at which the robot base
should not continue to move when the human lags behind.
The yA adaptive is set equal to the

−−→
psaty .

To achieve a lighter pull when the human deviation is
low and a stronger pull as the deviation increases, a logistic
function that adjusts lateral stiffness (kŷ) is employed. This
function modifies its output based on the yA adaptive as
follows:

kŷ = ζ +
(η − ζ)

1 + e(γ−|yA adaptive|)κ
(17)

where η, ζ, γ, and κ define the function’s maximum and
minimum asymptotes, the inflection point, and the steepness
of the curve, respectively.

G. Human guidance

The aim of this unit is to plan a trajectory that avoids any
collision at the same time for (i) the mobile base, (ii) the
robotic arm, and (iii) the human counterpart coupled with
the robotic system. To do so, three desired poses need to be
computed as depicted in Fig.1, namely the base target pose
XB target, the arm end-effector desired pose X̂EE des, and
the desired human pose at the legs height XH des. These
poses are extracted from a set of poses where the previous
component of the HRC framework has passed through as
described hereafter. Alg. 1 shows the pseudo-code of the
illustrated method.

The next target waypoint for the mobile base XB target

is selected among the poses received in input by the obstacle
avoidance unit, i.e. XB targets, by finding the target pose
that is no less than a distance D1 (see Fig. 1) from the actual
robot base pose XB (lines 1-6). This pose is then given as
input to the virtual torques shaping unit to define the moving
direction of the robot base.

Algorithm 1 Human guidance algorithm
Input: XB targets, XB , yA adaptive

Output: XB target, X̂EE des,XH des

1: for target in XB targets do
2: if EuclideanDistance(target,XB) ≥ D1 then
3: XB target = target
4: break for
5: end if
6: end for
7: for odom in XB [0,...,t−1] do
8: if EuclideanDistance(odom,XB) = D2 then
9: XEE des = odom

10: XEE des(z) = human hand height
11: break for
12: end if
13: end for
14: X̂EE des = XEE des

15: X̂EE des.translate(0, yA adaptive, 0)
16: for EE in XEE des [0,...,t−1] do
17: if EuclideanDistance(EE,XEE des) = D3 then
18: XH des = EE
19: XH des(z) = 2D laser height
20: break for
21: end if
22: end for
23: return XB target, X̂EE des,XH des



Likewise, to ensure that the end-effector desired pose lies
on the collision-free path, XEE des is selected among the
set of previous base poses XB [0,...,t−1], by picking the
value located at a distance D2 (see Fig. 1), that is set as
the distance between the starting base and arm end-effector
poses (lines 7-13). Since the pose for the robotic hand is
selected among the base poses, and therefore does not lie at
the same height, the z component of XEE des is set to be
equal to the human hand height. This pose is then translated
on the y-axis (w.r.t. the arm base frame) by yA adaptive (lines
14-15), to readjust the human pose if their are deviating from
the imposed trajectory, as illustrated in Sec. II-F.

In a similar manner, the human desired pose XH is
chosen as the previous desired end-effector poses vector
XEE des [0,...,t−1] that lies at distance D3 (see Fig. 1),
i.e., the desired distance between the end-effector and the
subject (lines 16-22). Since the human desired pose lies on
a different horizontal plane, its height is adjusted to be on
the same plane as the 2D laser scanners.

H. Virtual torques shaping

To define the motion direction and velocity for the mobile
base, we can define the virtual torques to be given as input
to the Cartesian admittance controller. To do so, we define a
vector −→w = [x, y, θ]T that connects the robot base measured
pose XB and the next base target waypoint XB target as:

|−→w | =
√
XB

B target(x)
2 +XB

B target(y)
2, (18)

−→w x = XB
B target(x)/|

−→w |, (19)
−→w y = XB

B target(y)/|
−→w |, (20)

−→w θ = atan2(−−→w y,
−→w x). (21)

The virtual torques τ vir
B can be calculated by individually

multiplying each component of the vector by a desired force
Fdes and the gain αB . The desired force represents the
maximum pulling force that the system can exert on the
human operator, while the second parameter is computed as
described in Sec. II-F:

τ vir
B (fx) =

−→w xF
des
x αB , (22)

τ vir
B (fy) =

−→w yF
des
y αB , (23)

τ vir
B (µz) =

−→w θF
des
z αB . (24)

III. EXPERIMENTS AND RESULTS

A. Experimental setup

We carried out two series of experiments deploying the
mobile manipulator platform MOCA [34]. In the first one,
we validated the framework, comparing results obtained
with and without the adaptive pulling method introduced in
this study, conducted in a controlled laboratory environment
(Sec. III-B). In the baseline trials, i.e., without adaptive
pulling, the robot lateral stiffness ky was set to 0N/m
to leave freedom of motion to the subject. In the second
experiment, we conducted a proof-of-concept experiment in
a real-world scenario (Sec. III-C). For both experiments, kx
was set to 1000N/m to maintain a rigid profile in the primary
direction of motion, ensuring the human subject is pulled
towards the desired path, and kz was set to 500N/m to grant

Fig. 3. Lateral stiffness profile adopted by the adaptive pulling unit.

the user the option to make minor adjustments to the hand’s
vertical position. These stiffness values were selected within
the range of typical human arm stiffness to ensure a natural
and comfortable sensation during interactions [35]. F des was
set to a value of 80N , that guarantees a reasonable final
velocity for visually impaired subjects. As can be seen from
Fig. 3, the adaptive pulling unit generates lateral stiffness
around 0 when the deviations are small, as in the baseline,
whereas it escalates swiftly when the deviations increase
during the task. A video of the experiments is available at
https://youtu.be/B94n3QjdnJE.

B. Framework validation

To validate the presented framework, we first carried
out an experiment, shaping a predefined trajectory, without
employing the obstacle avoidance planner. This approach
was adopted to enable a more quantifiable comparison while
using the adaptive pulling unit and the baseline. This exper-
iment was conducted by randomizing the trials and involved
12 healthy subjects (6 males, 6 females), whose sight was

(a)

(b)

(c)

Human

Robot
0.75 m

0.68 m

Start

End

A

B

Fig. 4. Plots on the XY plane using a predefined trajectory with adaptive
pulling (a) and without (b). In the bottom, the variations of |−→py | that reflect
lateral deviations of the human from the desired path are presented (c).



(a)

(b)

Fig. 5. The x and y component of the
−−→
psat vector directly reflect the

changes in the adaptive stiffness kŷ and base virtual torques gain αB .

covered in order to simulate a visual impairment. Fig. 4
shows the trajectories in the XY plane followed by the HRC
system with (top) and without (middle) using the adaptive
pulling planner. The XB targets (dark yellow points) are
tracked by the robot base pose XB (black). The desired
end-effector XEE des and human XH des poses are not
plotted since they correspond to XB shifted back in time
as explained in Alg. 1, so they would not be visible. In
the top plot it is possible to notice that, with the adaptive
pulling, X̂EE des (dashed red) tends to compensate the
human deviations (XH in purple) from the desired trajectory.
For instance, in the focused portion of the plot we can
observe that when the human is deviating on the robot’s right
(point A), thanks to the translation of yA adaptive applied
to XEE des, the robot end-effector desired pose X̂EE des

stands on the robot left (point B) in order to pull back
the human on the desired collision-free path. By employing
this method, the human pose ΣH never extends beyond the
robot’s base footprint indicated by the gray area. On the
other hand, without using adaptive pulling (middle plot),
ΣH goes beyond the robot’s base footprint for 22.84% of
the time. This is not desirable since it can lead to potential
collision with obstacles. The bottom plot highlights the
lateral deviation of the human pose ΣH w.r.t. their desired
one ΣH des.

Fig. 5 shows, for the adaptive pulling trial illustrated
above, the values of

−−→
psat (a), and the consequent adjustment

of the lateral stiffness profile kŷ and base virtual torques gain
αB (b). It can be noticed that kŷ follows the trend of

−−→
psaty

according to (17), i.e., increasing the lateral stiffness profile
when the subject deviates on the lateral direction, and that the
gain αB decreases below 1 whenever

−−→
psatx goes below 0, i.e.,

giving rise to a reduction of the base velocity if the subject
is lagging behind their desired pose. The small fluctuations

*** Half of the 
robot’s 
width

(a) (b)
Fig. 6. The average of |−→py | values that reflect lateral deviations along with
the outcome of the sign-test carried out: ***: p < 0.001 (a) and the evolution
of the |−→py | throughout the trials (b) for both the cases with adaptive pulling
and the baseline, considering all participants.

A

B
CD

Fig. 7. Real-world scenario: the obstacle avoidance planner generates
XB targets poses and creates a map of the environment (left). The
screenshots of four crucial moments [A-D] are shown on the right.

in
−−→
psatx stem from human footsteps since, as mentioned in

Sec.II-D, the human pose is determined by averaging the
legs’ centroids position.

Fig. 6 presents both the boxplots of average lateral de-
viations from the desired path (|−→py|) and the variations of
the |−→py| throughout the task as a function of normalized
time for all the participants. As shown in Fig. 6a, employing
the adaptive pulling strategy led to a significant decrease in
deviations compared to the baseline according to the sign-
test (p < 0.001). Moreover, when the deviation variations
for the baseline trials are analyzed, it can be seen that the
participants went out of the collision-free path, which can
cause risky interactions with the environment (see Fig. 6b).
By using the proposed adaptive guidance framework, it was
possible to keep the participants within safe boundaries.

C. Real-world scenario proof-of-concept

We also conducted a proof-of-concept experiment includ-
ing the obstacle avoidance planner to the framework. Fig. 7
shows on the left the trajectories in the XY plane similarly as
in Fig. 4. The plot is enriched with the map generated by the
obstacle avoidance unit. On the right side, we present four
pivotal stages of the experiment conducted at points A, B, C,
and D as depicted in the left plot. These stages demonstrate
that even when encountering sharp 90-degree curves, all the
components of the HRC framework successfully avoid the
obstacle.

IV. CONCLUSION AND DISCUSSION

In this paper, we introduced a framework designed to
guide individuals who are visually impaired through unfa-
miliar environments using a mobile manipulator. We achieve
this by initially configuring a default compliant profile on
the lateral axis to create a safer interaction between humans
and the robot. However, when the individual strays from the
intended trajectory, our system guides them back by adjust-
ing impedance settings and directing the robotic arm. The
experiments carried out with 12 subjects demonstrated the
validity of the framework in avoiding obstacles. Future works
will enhance the system robustness and user-friendliness
by introducing a human-robot interface to communicate
the desired destination, and by testing the framework with
visually impaired subjects. Other modalities, as audio cues,
will be investigated to strengthen the provided assistance.
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and J. M. Gómez-de Gabriel, “Underactuated gripper with forearm
roll estimation for human limbs manipulation in rescue robotics,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 5937–5942.

[11] J. Ding, Y.-J. Lim, M. Solano, K. Shadle, C. Park, C. Lin, and
J. Hu, “Giving patients a lift-the robotic nursing assistant (rona),” in
IEEE International Conference on Technologies for Practical Robot
Applications (TePRA). IEEE, 2014, pp. 1–5.

[12] T. Nakamura and H. Tsukagoshi, “Soft pneumatic manipulator capable
of sliding under the human body and its application to preventing
bedsores,” in IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM). IEEE, 2018, pp. 956–961.

[13] Y. Liu, G. Chen, J. Liu, S. Guo, and T. Mukai, “Biomimetic design
of a chest carrying nursing-care robot for transfer task,” in IEEE
International Conference on Robotics and Biomimetics (ROBIO).
IEEE, 2018, pp. 45–50.

[14] N. T. Fitter, M. Mohan, K. J. Kuchenbecker, and M. J. Johnson,
“Exercising with baxter: preliminary support for assistive social-
physical human-robot interaction,” Journal of neuroengineering and
rehabilitation, vol. 17, pp. 1–22, 2020.

[15] H. Su, A. Di Lallo, R. R. Murphy, R. H. Taylor, B. T. Garibaldi,
and A. Krieger, “Physical human–robot interaction for clinical care in
infectious environments,” Nature Machine Intelligence, vol. 3, no. 3,
pp. 184–186, 2021.

[16] F. J. Ruiz-Ruiz, A. Giammarino, M. Lorenzini, J. M. Gandarias, J. H.
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