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Abstract—Novel high-resolution pressure-sensor arrays allow
treating pressure readings as standard images. Computer vision
algorithms and methods such as Convolutional Neural Networks
(CNN) can be used to identify contact objects. In this paper, a
high-resolution tactile sensor has been attached to a robotic end-
effector to identify contacted objects. Two CNN-based approaches
have been employed to classify pressure images. These methods
include a transfer learning approach using a pre-trained CNN
on an RGB-images dataset and a custom-made CNN (TactNet)
trained from scratch with tactile information. The transfer learn-
ing approach can be carried out by retraining the classification
layers of the network or replacing these layers with an SVM.
Overall, 11 configurations based on these methods have been
tested: 8 transfer learning-based, and 3 TactNet-based. Moreover,
a study of the performance of the methods and a comparative
discussion with the current state-of-the-art on tactile object
recognition is presented.

Index Terms—Tactile Sensors, Object Recognition, Deep
Learning.

I. INTRODUCTION

SENSE of touch is essential for human beings to perform
complex tasks such as object recognition. As for humans,

tactile information is also useful for robotics systems [1], [2].
Nowadays research studies in robotics are focusing on making
robots more similar to humans. That includes providing the
robot tactile perception [3], [4]. However, tactile sensing is
not enough, and some level of intelligence is required. This
way, tactile perception is still a fundamental problem in field
robotics that has not be solved so far [5]. To overcome this,
two points have to be addressed: first, obtaining sensing tactile
information, and second, having the cognitive capabilities to
process that information [6].

On the one hand, multiple tactile sensors (as the one pre-
sented in Fig. 1) have been employed in robotics manipulators
and grippers [7], [8] to carry out a large variety of applications
such as slippage detection [9], [10], tactile object recognition
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Fig. 1: The tactile end-effector attached on the robotic ma-
nipulator AUBO OUR-i5 as a platform to touch objects and
collect data.

[11], [12] and surface classification [13], [14], [15]. Tactile
sensors estimate the pressure by measuring different physical
magnitudes. Thus, the information given depends on the nature
of the transducer. For example, typical piezoresistive tactile
sensors produce a pressure image where each pixel represents
the pressure measured by each tactel [16], while hall-effect
sensors are used in combination with magnets and elastic
materials [17] to estimate the pressure in larger areas. Other
technologies have also been used to estimate contact pressure
from other physical magnitudes such as light [18], air pressure
[19] or capacitance [20].

On the other hand, novel Artificial Intelligence (AI) tech-
niques can be used for interpreting the information perceived
by tactile sensors. Machine learning methods such as Gaussian
Processes [21], Bayesian approaches [22], k-mean cluster-
ing and Support Vector Machines (SVM) [23] or k-Nearest
Neighbour (kNN) [24] have been used for distinguishing
contacts. Novel Convolutional Neural Networks (CNNs) are
also acquiring excellent results in multiple applications such
as visual object recognition [25]. These methods can be used
for recognizing objects contacted through tactile sensors [26],
[27], [28].

It is also possible to transfer the knowledge from other
domains to reduce the efforts of data collection, building
a CNN model, and training the new network from scratch
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TABLE I: Main differences between RGB and tactile images.
*The number of features depends on each image itself, but in
general terms it could be affirmed that tactile imprints have
lower number of features than RGB images.

Factors RGB Tactile

Spatial resolution 1.6× 105 1.4× 103

Color Yes No

Background Yes No

Magnitude Light intensity Pressure

Number of features* High Low

Object in image Whole object Depends on the size

Area of detection Large Small

Depth of field Large Small

Type of perception Passive Active

Shading, texture,
3D visual signs focus, movement, No

perspective

Amount of data 1.3× 106 1.1× 103

(i.e. transfer learning). This way, some applications can take
advantage of the developments made for similar fields (e.g.
pressure versus visual image classification), using previous
calibration data reduce training time for new devices, and
labelling form one classifier can be reused for different input
sets [29]. CNN for video image recognition automatically
detect features and provide image invariances such as rotation,
scale, and brightness [7]. In particular, transfer learning is
specially useful when the amount of training data from the
domain of interest is limited. In [30], the transfer when the
amount of target data is minimal is studied.

The available deep CNNs trained for image recognition can
have millions of weights, and the size of the layers can be
bigger than the actual input data from the new application
domain. The application of these traditional CNNs to tactile
object recognition may be not efficient due to the shortage of
features in tactile images in comparison with RGB images,
and also to the lower resolution of tactile images among
other factors. The main differences between RGB and tactile
images can be seen in Fig. 2 and are summarized in Table I.
Moreover, using these networks for embedded applications,
with computational and energy constraints, is not suitable. For
embedded applications in domains with a smaller input data
size (i.e. lower resolution images) or a lower number of output
labels, a custom CNN built from scratch may be done off-line
in a different computer) with an eventually limited amount of
training data has to be addressed using data augmentation.

This paper is focused on the application of tactile perception
techniques for practical autonomous robots, that have limited
computational power and energy. In that sense, this work
provides comparative results of eleven CNN-based approaches
to recognize pressure images in terms of recognition rate
and computational load. Two main approaches are presented:
transfer learning from CNNs pre-trained in a dataset of RGB

Thin film
sensor

Rigid End-of-arm

Rubber

Object

Contact Contact

Depth
of field

a)

b)

Fig. 2: Differences between visual and pressure images a) Il-
lustration of the depth-of-field in pressure images. b) Examples
of video (top) vs pressure (bottom) images for common objects
(from left to right and top to bottom: pliers, pen, scissors and
tape).

images, and training a custom CNN from scratch using tactile
information only. Tactile data is collected by a high-resolution
piezoresistive tactile sensor which has been attached to a
robotic manipulator as shown in Fig. 1. CNN-based tech-
niques, commonly used in visual object recognition tasks, are
used to classify tactile data. In particular, different CNN-based
methods are evaluated in a 22-classes experiment. Transfer
learning approach is compared with a custom-made CNN in
terms of accuracy and classification time. The customized
CNN has been named TactNet and includes 3 configura-
tions: TactNet-4, TactNet-6 and TactResNet. The results are
discussed, and the most beneficial situation for using one
method or another is determined based on the experimentation,
considering the recognition rate and the classification time.
Besides, these approaches are analyzed and compared against
the current state-of-the-art. Therefore, this paper can also
be used as a guide for further readers whose intend to use
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CNNs to classify pressure images. Furthermore, the data and
the methods have been made available in the GitHub cloud-
based platform, so they can be used with different methods to
compare new approaches while providing reproducibility to
this work.

II. RELATED WORK

In literature, two main approaches can be followed: sur-
face/material identification and object recognition. Material
identification refers to the extraction of information for the
superficial properties of an object like roughness, texture, stiff-
ness or thermal conductivity [15], [31], [32], [33]. Sequential
data is important to identify the properties of objects. The
interpretation of tactile information as time-series of data is
presented in multiple works about material identification [34],
[35]. An exploratory motion is carried out with a robotic
arm in [36] to obtain dynamic information with a 2D force
sensor (normal and shear forces). The control of the actuator
is critical to maintain the pressure against the contact material
constant and obtain trustworthy information. In that case, a
multi-channel neural network is used and a high accuracy is
achieved.

On the other hand, object recognition concerns to distin-
guish objects by its shape [37], [38], [39]. Apart from the
approach, most of these works are based on the use of AI
methods to identify tactile information. The use of one method
or another depends on the type of the sensed information.

Related works used Neural Networks and Deep Learning
techniques to recognize objects [40], [41]. This way, the
benefits of using CNNs can be exploited. The translation-
invariant property allows the recognition independently of the
position of the object in the image [42]. In [23], a CNN-based
method is developed to recognize in-contact human hand with
artificial skin. The method takes advantage of the translation-
invariance of the networks, being able to identify both right
and the left hands, indistinctly. The use of Deep Learning with
dropout to reduce overfitting is presented in [41]. This work
also describes the benefits of including both kinesthetic and
tactile information to object shape recognition and raises the
differences between using planar or curved tactile sensors. Luo
et al. also propose a novel algorithm which synthesizes both
kinesthetic and tactile information, forming a 4D point cloud
of the object with the label numbers of the tactile features as
an additional dimension to the 3D sensor positions [12].

Other idea consists of applying multi-modal techniques [43].
Fusing haptic and visual data generally presents better results
than using a single kind of information [44]. In [45] a multi-
modal deep learning method based on a CNN is presented. The
network takes the information sensed with an accelerometer
and the corresponding image of the surface material as inputs
and estimates the contact material.

The information acquired by a pressure sensor array can be
represented as a matrix, the same way as an image. Multiple
studies treat tactile data as images [7], [23], [24], [46], [47].
Most of them are based on the same two steps: feature ex-
traction from pressure images and obtaining a classifier based
on those features [48]. An existing solution uses a variant of

the Scale Invariant Feature Transform (SIFT) descriptor as a
feature extractor and a supervised k-Nearest Neighbour (kNN)
algorithm to get the classifier [24]. However, multiple touches
are needed to obtain good results in the classification task.

Pressure data extracted from tactile arrays can also be
considered as a series of images. A flexible high-resolution
tactile sensor is used in [27] to classify food textures. A CNN
is used with a sequence of pressure images, taken when an
experimental device crushes the food imitating the movement
of a mouth closing and biting food. Although time series
of tactile data is important to record the behaviour of gel-
like food, authors found that using only two pressure images
produces similar results.

III. METHODOLOGIES

A. Tactile images

Pressure images have limited field-of-depth and depend
on the compliance of the object and the sensor. In Figure
3, the pressure images obtained with three different sensor
compliances, from the same plastic pipe are shown. Also,
quantitative measurements have been done and included in
the histograms in Fig.3(e), that shows how pressure images
obtained from flexible sensors that bend around the objects
have higher contact area, but lower dynamic range than the
images obtained with a flat rigid sensor [28]. The rigid
configuration has higher pressure values than the others and
avoid bending the thin-film sensor. This arrangement (as seen
in Figure 1) includes a layer of silicon rubber to further protect
the film and enhance the depth of field (see Fig. 2) of the
sensor, and has been chosen for the rest of the experiments in
this paper.

B. Transfer Learning

Transfer learning consists of using a trained neural network
for a different purpose for which it was created. Thus, a CNN
trained in a large amount of RGB images can be used to
classify pressure images. This idea takes advantage of the
particular roles played by each parts of a CNN. The first
convolutional layers of the network learn to extract features
from images, whereas the last layers learn to classify the input
data. Hence, this approach consists of using the convolutional
layers of a pre-trained CNN and replacing the classification
layers with a custom classifier.

The structure of this approach is presented in Fig. 4.
The first step consists of training a CNN in a large image
dataset. This CNN has two distinguishable parts: the firsts con-
volutional layers (C = [conv1, . . . , convk]) with filters sizes
[f1 × f1] , . . . , [fk × fk]; and the lasts fully-connected layers
(F = [fc1, . . . , fcn]). After the training process, the convolu-
tional part of the network learns to extract features F from
RGB images, while the fully-connected layers learn to classify
this features.

Considering this factor, the first part of the trained network(
Ĉ = [ ˆconv1, . . . , ˆconvk]

)
which has learn to extract features

from common RGB images F , can be exploited to extract
features from pressure images F ′. In this step, some trained
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Tactels Values

Contact surface: 16.53 cm 2

Mean tactels value: 0.16 [0-1]

Contact surface: 20.81 cm 2

Mean tactels value: 0.0689 [0-1]

Contact surface: 22.61 cm 2

Mean tactels value: 0.046 [0-1]
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e) Histograms of the pressure images

Fig. 3: Pressure images have limited field-of-depth and depend
on the compliance of the object and the sensor. a) Sensed ob-
ject. b) Pressure image from a rigid sensor. c) Pressure image
from a semi-rigid sensor. c) Pressure image from a flexible
sensor. e) Histograms of the pressure images, including contact
surface and mean tactel value for images b) c) and d).

fully-connected layers
(
F̂ =

[
f̂c1, . . . , f̂ct

]
with t < n

)
can

also be employed.
However, as the structure of the network has been

set previously, the size of the input tactile data
(T (r, c) ∀ r = 1, ..., R, c = 1, ..., C) has to match the
size of the RGB data used for training the convolutional
layers (I (r′, c′, z) ∀ r′ = 1, ..., R′, c′ = 1, ..., C ′, z = 1, 2, 3).

To use the transfer learning approach and take advantage of
the pre-learned parameters, the whole structure of the network
must be maintained. Hence if the pre-trained network has
been trained to classify I [R′ × C ′ × 3] images, this image
size has to be kept. Thus it is needed to resize tactile images
T [R× C × 1] to T′′ [R′ × C ′ × 3].

Then the bicubic interpolation method has been applied.
This method obtains better quality results than others, although
it needs larger amount of calculation [49]. However, the time
of this calculation can be disregarded in comparison with the

Fig. 4: Structure of the transfer learning approach. The replace-
ment of the classification layers can be carried out using an
SVM a) or fine-tuning the classification layers of the network
b).

neural network computation time. Each pixel T′ (r′, c′) of
the resized image is obtained from its 16-neighbour pixels
applying the equation (1):

T′ (r′, c′) =

3∑
i=0

3∑
j=0

[ri × cj ] T (i, j) , (1)

Where T (i, j) is the 16-neighbour matrix, and ri and cj
can be obtained by the equations (2) and (3):

ri =

3∏
k=0,k 6=i

r′ − [Sr × (x+ k)]

[Sr × (x+ i)]− [Sr × (x+ k)]
, (2)

cj =

3∏
k=0,k 6=i

c′ − [Sc × (y + k)]

[Sc × (y + i)]− [Sc × (y + k)]
, (3)
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x and y are the values of each row and column divided
by the scale factor Sr = R/R′ and Sc = C/C ′ respectively.
Finally, according to equation 4, the matrix T′ [R′ × C ′ × 1]
is used in each of the 3 channels of T′′ to match the size of
the original RGB image I [R′ × C ′ × 3], resulting a 3-channel
tactile image T′′ [R′ × C ′ × 3].

T′′ (r′, c′, z) = T′ (r′, c′) , z ∈ [1, 2, 3] , (4)

Then, as shown at the bottom of the scheme in Fig. 4, the
classification layers of the network can be replaced by two
classifiers. On one hand, the substitution of the classification
layer by an SVM is contemplated in Fig. 4 a). On the other
hand, a simple idea is to train the classification layers again
(fine-tuning) on a tactile dataset Fig. 4 b).

C. TactNet

Other idea consists of creating a CNN from scratch and
training it from a pressure image dataset, however, a large
amount of tactile data is needed. For this work, a CNN for
tactile information classification (TactNet) has been created.
In this study, this network is configured with 4 and 6 plain
layers, following the architecture of the AlexNet [25], and
with 6 layers including residual convolutions, following the
structure of the ResNet [50].

These networks are composed by a set of convo-
lutional (C = [conv1, . . . , convk]) or residual convolutions
(R = [res1, . . . , resk]) which learn to extract tactile features
Ft from pressure images. A batch normalization layer with
ε = 10−4 is introduced after each convolution, followed by a
rectified linear unit (ReLU) to introduce non-linearities. Some
layers are alternated with a max-pooling layer with a stride of
2. Finally, a set of n fully connected layers (F = [fcn]) learn
to classify the input data.

The details of the three different configurations of TactNet
that have been considered in this work are explained below.
The networks were implemented in Matlab R2018b using the
Neural Network Toolbox. The implementation details can be
found at the GitHub repository 1

1) TactNet-4: This is the simplest configuration of Tact-
Net. The network is composed by 3 convolutional layers
(C = [conv1, conv2, conv3]) with filters sizes [5× 5] , 8 ,
[3× 3] , 16 and [3× 3] , 32 respectively; and a fully-connected
layer (F = [fc4]) with 22 neurons followed by a softmax-
layer to classify the input tactile data and gives the likelihood
of belonging to each class. The structure of this network is
shown in Fig. 5 a).

2) TactNet-6: In this case, the net-
work is formed by 5 convolutional layers
(C = [conv1, conv2, conv3, conv4, conv5]) with filters
sizes [5× 5] , 8 , [5× 5] , 16 , [3× 3] , 32 , [3× 3] , 64
and [3× 3] , 128 respectively. After that, 1 fully-connected
layer (F = [fc6]) with 22 neurons, and a softmax-layer to
get the probabilities. The structure of this network is shown
in Fig. 5 b).

1https://github.com/TaISLab/CNN-based-Methods-for-Tactile-Object-
Recognition

Fig. 5: Structure of the TactNet configurations: TactNet-4 a),
TactNet-6 b) and TactResNet c)

3) TactResNet: This network is formed by 1
convolutional layer (C = [conv1]), 4 residual layers
(R = [res2, res3, res4, res5]), and 1 fully connected layer
(F = [fc6]) followed by a softmax-layer to get the
probabilities. The filters and specifications of this network
are presented in Fig. 5 c).

IV. EXPERIMENTAL SETUP

A. Description of the experiments

The performance of the proposed methodologies is evalu-
ated based on the recognition rates achieved in an experiment
with objects from 22 classes. Tactile information from these
objects has been collected to carry out the learning processes.

Tactile data acquisition is a critical task as training data
determines the learning process, therefore the tactile sensor is
placed in contact with different objects manually. The operator
decides when a sample (pressure image) is valid or not based
on the visual information provided by the user interface of the
I-Scan data acquisition software, provided by Tekscan. With
this software the operator sees the pressure map in real-time.

In Fig. 2, an example of tactile imprints of four objects
used for the experiment is presented. The real-time pressure
map provided by the data acquisition software is formed by 15
values (colors) image. The color of each pixel depends on the
pressure applied in each tactel. Hence, the minimum pressure
(black) corresponds to 0Pa, whereas the maximum pressure
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TABLE II: Summary of the CNN-based techniques used for
the classification experiment (TL = Transfer Learning, conv =
Convolutional layer, res = Residual layer, SM = Softmax).

Approach Name Feat. Extractor Classifier

TL-SVM (Fig.4a)

SqueezeNet-SVM SqueezeNet SVM
AlexNet-SVM AlexNet SVM
ResNet-SVM ResNet SVM
VGG-SVM VGG16 SVM

TL-NN (Fig.4b)

SqueezeNet-NN SqueezeNet 1conv-SM
AlexNet-NN AlexNet 2fc-SM
ResNet-NN ResNet 1conv-SM
VGG-NN VGG16 3fc-SM

TactNet (Fig.5)
TactNet-4 3conv 1fc-SM
TactNet-6 5conv 1fc-SM
TactResNet 1conv-4res 1fc-SM

(red) corresponds to the maximum pressure admitted by the
sensor.

The experimental implementation consists of testing and
comparing 11 different classification procedures. Following
the transfer learning approach, 8 methods have been consid-
ered: 4 for the SVM classifier and 4 for re-training the last
layers of the network as a classifier (see Fig. 4). The pre-
trained networks used for extract features are AlexNet [25],
ResNet [50], SqueezeNet [51] and VGG16 [52]. On the other
hand, the 3 configurations of TactNet presented in Fig. 5 have
been also contemplated. The 11 methods are summarized in
Table II. Moreover, the SURF-SVM method described in [11]
has been included in the experiment as a comparison point to
show the enhancement of the CNN-based methods against a
traditional approach that doesn’t use deep learning.

To carry out the experiment, two different hardware systems
are used. A GPU NVidia GeForce GTX 1050 Ti with 4 GB of
RAM and a CPU Intel Core i7-7700HQ CPU @ 2.80 GHz.
The methods have been trained using both systems and the
classification time has been measured on each one.

B. Sensor specifications

The tactile end-effector employed for the experiments,
shown in Fig. 1, uses a high-resolution tactile sensor that
has been attached to the 6 DOF robotic arm AUBO Our-i5.
An own-designed 3D printed part is used for coupling the
sensor to the robotic manipulator. This component has been
manufactured using Fused Deposition Modelling (FDM) 3D
printing in PLA (PolyLactic Acid) plastic.

The data acquisition system is constituted by the tactile
sensor model 6077, the Evolution Handle and the I-Scan
software, which are provided by Tekscan (South Boston, MA,
USA). The high-resolution tactile-array has a total of 1400
pressure sensels (also known as tactels or taxels). Each tactel
has a size of 53.3 × 95.3mm, conforming a set of resistive
pressure sensors with density 27.6 tactels/cm2 distributed in a
matrix of 28 rows by 50 columns. The main features of the
sensor are detailed in Table III.

The tactile sensor is covered by a silicone rubber as a
contact interface which protects the sensor and conducts

TABLE III: Specifications of the high-resolution tactile sensor
model 6077 from Tekscan.

Parameter Value

Max. pressure 34 KPa
Number of tactels 1400
Tactels density 27 tactels/cm2

Temperature range -40 ◦C to +60 ◦C
Matrix height 53.3mm
Matrix width 95.3mm
Thickness 0.102mm

external forces. A silicon rubber pad (sourced by RS with code
733− 6713) provides soft contact between the sensor and the
objects.

C. Dataset

For training the models, the use of two datasets is con-
sidered. On one hand, CNNs used in transfer learning models
are pre-trained on more than a million images and can classify
images into 1000 object categories. The ImageNet dataset is
formed by common RGB images and is used in the ImageNet
Large-Scale Visual Recognition Challenge [53].

On the other hand, a dataset formed by tactile images has
been collected. This dataset is used to train the TactNet models
and the classifiers of the transfer learning methods. A total of
1100 pressure images have been used to feed each method.
These images are divided into 22 classes labelled as: Adhesive,
allen key, arm, ball, bottle, box, branch, cable, cable pipe,
caliper, can, finger, hand, highlighter pen, key, pen, pliers,
rock, rubber, scissors, sticky tape and tube.

Learning processes require three subsets of tactile data:
training set, validation set and test set. The training set is
composed by 704 images, 32 images for each label, whilst the
validation and test set are composed by 176 and 220 images
respectively.

TactNet models are trained using data augmentation tech-
niques. Exploiting the translation, rotation and scale invariant
traits introduced by data augmentation, the models are able to
recognize touched objects independently of their location in
the image, orientation or contact pressure [54]. Note that Ima-
geNet dataset already includes data augmentation techniques,
therefore these invariant qualities are also presented in transfer
learning models.

In the case of the learning process of the different configura-
tions of TactNet, the data augmentation techniques considered
have been reflections, rotations and translations in X and Y
axis. Hence, the amount of tactile data available for training
the networks is 4224, while the validation and test set are 1056
and 1320 respectively.

V. RESULTS

In this section, the results achieved by the applied meth-
ods according to the experiment statement are shown and
explained.
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Fig. 6 shows the learning processes of each TactNet configu-
ration from scratch. In this graph, it is shown that the accuracy
achieved by each configuration is close to 100%.

As the images used for the training process affect the
performance of the network, 20 training sets have been ran-
domly collected from the dataset to train each method, then
20 validation and 20 test sets were formed, also randomly,
with the rest of the data not used for training. The accuracy
achieved by each TactNet configurations over the 20 training
samples is presented in Fig. 7. Each bar represents the mean
recognition rate achieved by each configuration with the
training, validation and test sets. The error bars represent the
one standard deviation over the 20 samples. As expected, the
recognition rate achieved with the training rate is the highest
while the one achieved with the test set is the lowest. It is also
shown that the mean recognition rate is over 93% for all the
methods.

Fig. 8 presents a comparison graph of the mean recognition
rate achieved by the transfer learning approaches and TactNet
configurations. The method SURF-SVM has also been evalu-
ated to be compared against the CNN-based approaches. As
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method. The error bars represent the one standard deviation.
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Fig. 9: Comparison of the number of parameter of each
method, and the computation time for each one. The compu-
tation time considered in this graph corresponds to the clas-
sification time of the methods running on a NVidia GeForce
GTX 1050Ti GPU.

in the case of the TactNet, the training process of the transfer
learning methods and SURF-SVM has been carried out with
20 samples of randomized data.

Another aspect that has to be considered is the classification
time. This is highly dependent on the number of parameters
of a CNN and the hardware, and according to [55] the number
of parameters of a network is proportional to the number of
operations, the size and the inference time. Therefore, the
higher number of parameters a network has, the more memory
and processing time is required. Fig. 9 shows the number of
parameters of the CNN used in this work and the computation
time for each one running on the NVidia GPU.

On the other hand, the spatial resolution of the sensor
plays an important role on the performance of the task.
Therefore, a classification experiment with the best methods
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Fig. 10: Comparison of the performance of the best methods
of each CNN-based approach (see Table II and Table IV) for
different sensor’s resolutions using one touch only. The tactels’
distribution for each resolution is: 91−[7×13], 180−[10×18],
350− [14× 25], 700− [20× 35] and 1400− [28× 50].

of each approach: VGG16-SVM for transfer learning with
SVM (see Fig.4a), ResNet-NN for transfer learning with fine-
tuning (see Fig.4b) and TactNet6 for TactNet (see Fig. 5b), has
been carried out using approximately ×1/16, ×1/8, ×1/4,
×1/2 and ×1 resolution of the tactile sensor. The results are
presented in Fig. 10. The experiment is done using only one
touch to classify the objects, and the resolution of the sensor
is decreased by software using the bicubic interpolation (see
section IIIB). The structure of TactNet-6 is changed to match
the dimensions of the input data for each resolution, and some
hyperparameters are changed to ensure good training process.
This changes are not necessary in case of transfer learning
approaches as the input data is resized again to match the
original input size of the network.

VI. ANALYSIS AND DISCUSSION

A summary of the results is presented in Table IV. This
shows that both transfer learning and TactNet obtain high accu-
racy rates on tactile object recognition, and that using a CNN-
based approach can raise the mean recognition accuracy up to
17.72% against SURF-SVM in the best case (ResNet-NN). In
fact, the worst CNN method in terms of accuracy (SqueezeNet-
SVM) has an improvement of 8.08% against SURF-SVM. The
recognition rate in the case of transfer learning depends on
the CNN and the classifier, however if a large CNN is used
and the classifier consists of fine-tuning the fully-connected
layers of the network, the mean recognition rate and the
classification time increases. Nevertheless, the classification
times of the TactNet configurations are significantly shorter
than in transfer learning methods. These results show the
better performance of CNN-based method against traditional
approaches, especially when using TactNet configurations,
which present similar recognition rates to the best transfer
learning methods, but need substantially shorter classification

TABLE IV: Performance comparison between methods used
for tactile object recognition.

Model Parameters Accuracy[%] tGPU [s] tCPU [s]

SURF-SVM - 77.64 0.025 0.029

SqueezeNet-SVM 1.7M 85.82 1.05 7.934
AlexNet-SVM 57 M 87.73 0.96 4.141
ResNet-SVM 25.6M 92.77 3.21 23.848
VGG16-SVM 117 M 93.50 6.15 73.355

SqueezeNet-NN 1.7M 94.23 1.11 8.515
AlexNet-NN 57 M 94.14 1.06 4.982
ResNet-NN 25.6M 95.36 3.31 27.039
VGG16-NN 118 M 94.14 6.65 64.488

TactNet-4 25 k 93.59 0.051 0.094
TactNet-6 104 k 95.02 0.056 0.103
TactResNet 790 k 93.61 0.077 0.465

times. Moreover, a further reduction in computing time can be
obtained for the TactNet approach by using lower resolutions.

As different researchers are using different hardware, data
and methods, to compare the proposed method with existing
related works, a table with the qualitative/quantitative features
(see Table V) of relevant methods that use tactile information
as images, has been included. Different methodologies have
been employed, mostly applying computer vision techniques
for extracting features, followed by a classifier, as well as the
use of Artificial Neural Networks (ANN). It can be seen that
a large variety of tactile sensors, number of classes, number
of touches and type of objects can be used, and all these
aspects have an influence on the accuracy independent of the
followed approach. In general, the larger number of classes,
the smaller accuracy, and the larger number of touches, the
higher accuracy.

With the above considerations, the CNN-based methods
presented in this paper offers advantages with respect to the the
state-of-the-art. In fact, this is the second research work with
the largest number of objects in comparison with the state-of-
the-art. Only [57] has more classes, with 25 diverse symbols
(letters), so that they may be easier to classify. Besides, the
methods presented in this paper obtain the highest accuracy
of all of those works that have more than 2 classes, with the
exception of [57]. Our proposals perform better than other
methods with one order of magnitude less in the number of
classes and using only one touch.

VII. CONCLUSION

CNN-based methods for tactile object recognition based on
high-resolution pressure images, to classify objects along with
human-body parts (22 classes) using only one touch, have been
presented, evaluated and compared. Tactile images have some
similarities to video images, but have strong differences in
depth-of-field, resolution, apart from other qualitative consid-
erations that have been discusses in this work. A custom-built
CNN with a layer size that matches the size of the tactile
image, and has been trained from scratch, in opposition to
the use of transfer learning methods, that employ pre-trained
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TABLE V: State-of-the-art on tactile object recognition. Due to the nature of this work, and the variety of the approaches,
only those studies which treat tactile data as common images are considered. The last three conform the methods presented
in this paper.

Year Method Tactile sensor No of classes Accuracy [%] No of touches Type of objects

2009 Bag of Features [47] 2 fingers tactile array 21 84.6 10 Household + industrial
2012 PCA + SOM + BoK + ANN [56] Schunk dexterous hand 10 78.88 4 Household
2014 Stacked DAEs [41] Twendy-one hand 20 88.00 4 Household
2015 Tactile-SIFT [24] [6× 14] tactile array 18 91.33 15 Household
2015 Cascade of 2 NN [57] [8× 16] tactile array 25 96.00 1 Symbols (Letters)
2016 Zernike moment + iClap [12] [6× 14] tactile array 20 85.36 20 Household
2016 kernel sparse coding [35] Barret hand 10 > 90.00 1 Household
2017 SURF + k-mean + SVM [11] [28× 50] Tactile array 8 80.00 1 Household + body parts
2017 CNN + SVM [11] [28× 50] Tactile array 8 91.67 1 Household + body parts
2017 SURF + k-mean + SVM [23] Array with 768 tactels 2 98.15 1 Body parts
2017 CNN [23] Array with 768 tactels 2 98.33 1 Body parts
2017 SVM [58] NTU five-finger hand 2 96.67 1 Cylindrical, spherical or cubes
2018 ROTConvPCE-mv [26] Multiple hardware 5 - 10 81.66 - 99.03 Sequential data Household
2018 LDS-FCM [59] Multiple hardware 5 - 10 91 - 100 1 Household

2018 Transfer Learning (VGG16-SVM) [28× 50] Tactile array 22 93.50 1 Household + body parts
2018 Transfer Learning (ResNet-NN) [28× 50] Tactile array 22 95.36 1 Household + body parts
2018 TactNet-6 [28× 50] Tactile array 22 95.02 1 Household + body parts

CNNs in large video image dataset. In this approach, the
classification layers of a CNN are replaced by an SVM or fine-
tuned and re-trained in a set of up-sized tactile images with
good recognition rates but a high computational cost. Compar-
ative experiments with 11 deep-leaning methods (8 transfer
learning-based and 3 TactNet-based), have been carried out
using the same tactile image dataset on the same hardware
to get accuracy and evaluation times, showing the importance
of using input layers with just the size of the sensor. Similar
recognition rates with a huge reduction of classification time
are be achieved by TactNet. Full training of from-scratch
networks is a worthwhile one-time operation. Other recent
methods (such as SURF-SVM) applied to the recognition
of tactile images have been qualitative and quantitatively
compared with the presented approach without increasing the
accuracy over the deep leaning methods. A further reduction
in the size of the tactile images for recognition with the
presented approaches has been experimentally evaluated with
different resolutions showing that for our dataset, a significant
reduction in the number of tactels of the pressure image
can be done while keeping a high recognition rate. This is
important because a reduction in complexity and cost of the
tactile sensor and computational power can be done for this
kind of images. Finally, tactile sensing is active, therefore,
it requires physical interaction between the sensing surface
and the environment. In robotics, the use of series of tactile
information based on force/displacement will be considered.
Considering sequences of tactile images, dynamic information
of the contact can be used as input to the CNN to classify
and identify physical properties of objects. In this case the
performance and computational requirements of the 3D CNNs
will be studied optimized to provide real-time execution.
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