
Article

Using 3D Convolutional Neural Networks for Tactile
Object Recognition with Robotic Palpation

Francisco Pastor* , Juan M. Gandarias , Alfonso J. García-Cerezo and Jesús M.
Gómez-de-Gabriel

Robotics and Mechatronics Group, Telerobotic and Interactive Systems Laboratory, University of Málaga, Spain.
fpastor@uma.es (F.P.), jmgandarias@uma.es (J.M.G.), ajgarcia@uma.es (A.G.C.), jesus.gomez@uma.es (J.G.G.)
* Corresponding author

Version January 21, 2024 submitted to Sensors

Abstract: In this paper, a novel method of active tactile perception based on 3D neural networks1

and a high-resolution tactile sensor installed on a robot gripper is presented. A haptic exploratory2

procedure based on robotic palpation is performed to get pressure images at different grasping3

forces that provide information not only about the external shape of the object but also about its4

internal features. The gripper consists of two underactuated fingers with a tactile sensor array in5

the thumb. A new representation of tactile information as 3D tactile tensors is described. During6

a squeeze-and-release process, the pressure images read from the tactile sensor are concatenated7

forming a tensor that contains information about the variation of pressure matrices along with the8

grasping forces. These tensors are used to feed a 3D Convolutional Neural Network (3D CNN) called9

3D TactNet, which is able to classify the grasped object through active interaction. Results show that10

3D CNN performs better, and provide better recognition rates with a lower number of training data.11

Keywords: Tactile perception; Robotic palpation; Underactuated grippers; Deep learning12

1. Introduction13

Recent advances in Artificial Intelligence (AI) have brought the possibility of improving robotic14

perception capabilities. Although most of them are focused on visual perception [1], existing solutions15

can also be applied to tactile data [2–4]. Tactile sensors measure contact pressure from other physical16

magnitudes, depending on the nature of the transducer. Different types of tactile sensors [5–9] have17

been used in robotic manipulation [10,11] for multiple applications such as slippage detection [12,13],18

tactile object recognition [14,15] or surface classification [16,17] among others.19

Robotic tactile perception consists in the integration of mechanisms that allow a robot to sense20

tactile properties from physical contact with the environment along with intelligent capacities to extract21

high-level information from the contact. The sense of touch is essential for robots the same way as for22

human beings to performing both simple and complex tasks such as object recognition or dexterous23

manipulation [18–20]. Recent studies focused on the development of robotic systems that behaves24

similar to humans, including the implementation of tactile perception capabilities [21,22]. However,25

tactile perception is still a fundamental problem in robotics that has not been solved so far [23]. Also,26

there are multiple applications, not limited to classic robotic manipulation problems, that can benefit27

from tactile perception such as medicine [24], food industry [3], or search-and-rescue [4] among others.28

Many works related to tactile perception use pressure images after the interaction [25], which29

means that the interaction is considered static or passive. However, tactile perception in the real world30

is intrinsically active [26]. A natural or bio-inspired haptic Exploratory Procedure (EP) for perceiving31

pressure or stiffness of an object must consider dynamic information [27]. According to [28], the haptic32

attributes that can be perceived depends on the EP.33
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Figure 1. The full experimental system formed by a robotic manipulator, an underactuated gripper with
a tactile sensor, and the control electronics (a), a 3D tensor representation of active tactile information
when the gripper is grasping a squeezable ball (b), and a subset of pictures and their respective tactile
images of a grasping sequence of another squeezable ball (c). In (b), the tensor is sectioned to show the
intrinsic attributes and pressure variations of the grasped object.

survey on the concept of active tactile perception considering biological and psychological terms34

is presented in [29]. In this chapter, and according to [30], two approaches for tactile perception in35

robots are possible: perception for action, which means that the perceived information is used to guide36

the robot (i.e., dexterous manipulation and grasp control), and action for perception, which means37

that the robot explores the environment to collect data (i.e., active perception and haptic exploration).38

Hence, an active tactile perception approach can be defined as one in which the data are collected39

during an active EP using an active sensing approach (e.g., tactile sensing). This means that action40

and perception are not separated, and the robot collects dynamic data depending on the action, while41

this action is occurring. Therefore, although both static and dynamic tactile data are useful for many42

robotic applications, it can be considered that active perception is more faithful to the real sense of43

touch, and the information acquired using active tactile sensing reflects better the attributes of the44

grasped objects. Static pressure images only contain information about stiffness and shape of the45

object when a certain force is applied [14], while the changes of the pressure distribution over force,46

contain information about the variation of shape and stiffness during the whole EP [31]. This dynamic47

information allows us to distinguish both rigid and deformable objects [32].48

This paper addresses the shortcomings mentioned above and is focused on the active tactile49

perception problem in robotics. A robotic palpation process with active tactile sensing, based on a50

squeeze-and-release motion for distinguishing grasped objects, both rigid and deformable, is presented51

(See Fig. 1). The robotic EP conceives a novel representation of dynamic tactile information based on52

sequences of pressure images and an AI method based on 3D Convolutional Neural Networks (3D53

CNNs) for active tactile perception. A tactile sensor array is integrated into the thumb of a gripper54
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with two underactuated fingers to get sequences of tactile images. These sequences are represented as55

3D tensors similar to Magnetic Resonance Imaging (MRI). However, in this case, 3D tactile tensors56

represent the variation of pressure distribution over applied force, whereas MRI contains information57

about cross-sectional images of internal structures and organs over distance. Although the type of58

information contained in MRIs and 3D tactile tensors is different, methods such as 3D CNNs used to59

process MRI information [33,34], might be used for tactile data with good results in this application60

as we explored in our previous work [35]. In this work, our preliminary study is expanded: A61

high-resolution tactile sensor has been integrated into a new gripper where the palpation process (e.g.,62

the EP) is fully autonomous, so the robot controls the grasping force. As a result, not only objects with63

different elasticity are compared and classified, but also objects that contain internal inclusions and64

bags of objects which provide different pressure images each time, have been tested. In particular,65

24 objects have been used: rigid, deformable, and in-bag; and the results are compared against 2D66

CNN-based methods. Altogether, the main contribution of this paper relates to the entire process of67

active tactile perception, considering the use of an underactuated, sensorized gripper to carry out the68

EP, and a 3D CNN for tactile perception.69

The relevance of this contribution relies on different factors. First, the presented method achieves70

better performance in the discrimination problem for all kinds of objects, and in case that the number71

of classes increases, a lower number of training data is needed to obtain higher accuracy rates than72

classic 2D networks. Second, it is also shown that in case of misclassification, the resulting object class73

has almost indistinguishable physical features (e.g., soda cans of different capacities), where 2D CNNs,74

in the event of failure, give disparate output classes unrelated to the class of the grasped object.75

This paper is structured as follows: In section 2, the current state-of-the-art related to this topic is76

introduced. In section 3, the underactuated gripper and the 3D CNN-based method used for tactile77

perception are described. The experimental protocol and results are explained in section 4, and a78

thorough and detailed discussion of our results in comparison with related works is presented in79

section 5. Finally, the conclusion and future research lines are exposed in section 6.80

2. Related Work81

Related works within the scope of tactile perception in robotics focus on tactile object-recognition82

from pressure-images, deep-learning methods based on CNNs, and active tactile perception.83

2.1. Tactile object recognition84

Two main approaches for tactile object recognition may be considered depending on the nature of85

the EP: On one hand, perceiving attributes from the material composition, which are typically related86

to superficial properties like roughness, texture, or thermal conductivity [36–38]. On the other hand,87

other properties related to stiffness and shape may also be considered for object discrimination [39–41].88

Most of these works are based on the use of novel machine learning-based techniques. That way,89

different approaches can be followed, such as Gaussian Processes [42], k-Nearest Neighbour (kNN) [25],90

Bayesian approaches [43], k-mean and Support Vector Machines (SVM) [44] or Convolutional Neural91

Networks (CNNs) [45] among others. Multi-modal techniques have also been considered in [46],92

where they demonstrated that considering both haptic and visual information generally gives better93

results.94

2.2. Tactile perception based on pressure images95

Concerning the latter approach, most of the existing solutions in literature acquire data from96

tactile sensors, in the form of matrices of pressure values, analog to common video images [47]. In97

this respect, multiple strategies and methodologies can be followed. In [25] a method, based on Scale98

Invariant Feature Transform (SIFT) descriptors, is used as a feature extractor, and the kNN algorithm99

is used to classify objects by their shape. In [15], Luo et al. proposed a novel multi-modal algorithm100
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that mixes kinesthetic and tactile data to classify objects from a 4D point cloud where each point is101

represented by the 3D position of the point and the pressure acquired by a tactile sensor.102

2.3. CNNs-based tactile perception103

One recent approach for tactile object discrimination consists of the incorporation of modern deep104

learning-based techniques [48,49]. In this respect, the advantages of Convolutional Neural Networks105

(CNNs) such as translational and rotational invariant property, enable the recognition in any pose [50].106

A CNN-based method to recognize human hands in contact with an artificial skin has been presented107

in [51]. The proposed method benefits from the CNNs translation-invariant properties and is able to108

identify whether the contact is made with the right or the left hand. Apart from that, the integration of109

the dropout technique in deep learning-based tactile perception has been considered in [49], where the110

benefits of fusing kinesthetic and tactile information for object classification are also described, as well111

as the differences of using planar and curved tactile sensors.112

2.4. Active tactile perception113

In spite of the good results obtained by existing solutions in tactile object recognition, one of the114

main weaknesses is that most of these solutions only consider static or passive tactile data [25]. As115

explained, static tactile perception is not a natural EP to perceive attributes like pressure or stiffness [27].116

Pressure images only have information about the shape and pressure distribution when a certain force117

is applied [14]. On the other hand, sequences of tactile images also contain information about the118

variation of shape (in the case of deformable objects [32]), stiffness and pressure distribution over119

time [31].120

Time-series or sequential data are important to identify some properties. This approach has been121

followed in some works for material discrimination [52,53]. In [54], an EP is carried out by a robotic122

manipulator to get dynamic data using a 2D force sensor. The control strategy of the actuator is critical123

to apply a constant pressure level and perceive trustworthy data. For this purpose, a multi-channel124

neural network was used achieving high accuracy levels.125

Pressure images obtained from tactile sensors have also been used to form sequences of images.126

In [3], a flexible sensor was used to classify food textures. A CNN was trained with sequences of tactile127

images obtained during a food-biting experiment in which a sensorized press is used to crush food,128

simulating the behavior of a mouth biting. The authors found that the results when using the whole129

biting sequence or only the first and last tactile images, were very similar because the food was crushed130

when a certain level of pressure was applied. Therefore the images before and after the break point131

were significantly different. For other applications, as it was demonstrated in [55], Three-Dimensional132

Convolutional Neural Networks (3D CNNs) present better performance when dealing with sequences133

of images than common 2D CNNs.134

3. Materials and Methods135

The experimental setup is composed by a gripper with a tactile sensor. The gripper, the136

representation of 3D tactile information, and the 3D CNN are described next.137

3.1. Underactuated gripper138

The active perception method has been implemented using a gripper with two parallel139

underactuated fingers and a fixed tactile-sensing surface (See Fig. 2). The reason for using an140

underactuated gripper is that this kind of gripper allows us to apply even spread pressure to the141

grasped objects, and the fingers could adapt to their shape, which is especially useful when grasping142

deformable or in-bag objects. In our gripper, each underactuated finger has two phalanxes with two143

DOF’s θ1 and θ2, and a single actuator θa capable of providing different torque values τa. The values of144

the parameters of the kinematics are included in Table 1. A spring provides stiffness to the finger to145

recover the initial position when no contact is detected.146
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Figure 2. Gripper design (left) with two independent underactuated fingers and one fixed thumb with
a tactile sensor covered with a silicone pad. The kinematic structure of the underactuated fingers (right)
shows the five-bar structure with associated parameters and DOF’s.

Two smart servos (Dynamixel XM-430 from ROBOTIS) have been used to provide different147

torques trough rigid-links, using a five-bar mechanical structure to place the servos away from the first148

joint. Thus, the relationship between τa and the joint torques (τ1, τ2) can be expressed as a transfer149

matrix T, and the computation of the Cartesian grasping forces ( f1, f2) from the joint torques is defined150

by the Jacobian matrix F = J(θ)τ.151

The computation of those matrices requires knowledge of the actual values of the underactuated152

joints. For this reason, a joint sensor has been added to the second joint of each finger. The remaining153

joint can be computed as the actual value of the servo joint, which is obtained from the smart servos.154

Two miniature potentiometers (muRata SV01) have been used to create a special gripper with both155

passive adaptation and proprioceptive feedback.156

The dynamic effects can be neglected when considering slow motions and lightweight fingers.157

This way, a kinetostatic model of the forces can be derived(1) as described in [56].158

F = J(θ)−T T(θ)−T τ (1)

Although the actual Cartesian forces could be computed, each object with a different shape should159

require feedback control to apply the desired grasping forces. In order to simplify the experimental160

setup, an open-loop force control has been used for the grasping operations, where the actuation161

(PWM) of the DC motors of the smart servos follows a slow triangular trajectory from a minimum162

value (5%) to a maximum (90%) of the maximum torque of 1.4 N.m of each actuator. The resulting163

position of each finger depends on the actual PWM and the shape and impedance of each contact area.164

Table 1. Parameter values for the kinematic model of the gripper with underactuated fingers.

Parameter Value Parameter Value
a 40 mm e 27.8 mm
b 20 mm ψ 90◦

c 60 mm γ 56◦

d 25 mm w 10 mm
l0 25 - 45 mm l1 70 mm
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Table 2. Main features of the Tekscan 6077 tactile sensor.

Parameter Value
Max. pressure 34 KPa
Number of tactels 1700
Tactels density 27.6 tactels/cm2

Temperature range −40 ◦C to +60 ◦C
Matrix height 53.3 mm
Matrix width 95.3 mm
Thickness 0.102 mm
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Figure 3. 3D tactile tensors (bottom) of the same sponge with and without hard inclusions (top). The
inclusions become visible as grasping force increases, but cannot be seen in the picture of the sponge.

Finally, a microcontroller (Arduino Mega2560) has been used to acquire angles form the analog165

potentiometers and communicating with the smart servos in real-time, with a 50 ms period.166

3.2. Tactile Sensor167

A Teskcan (South Boston, MA, USA) sensor model 6077 has been used. This high-resolution168

tactile-array has 1400 tactels (also called taxels o sensels), with 1.3 × 1.3 mm size each. The sensor169

presents a density of 27.6 tactels/cm2 distributed in a 28 × 50 matrix. The main features of the sensor170

are presented in Table 2. The setup includes the data acquisition system (DAQ) (see Fig. 1(a)), and the171

Tekscan real-time SDK.172

A silicone pad of 3 mm has been added to the tactile sensor to enhance the grip and the image173

quality, especially when grabbing rigid objects. In particular, the EcoflexTM00 − 30 rubber silicone has174

been chosen due to its mechanical properties.175

3.3. Representation of active tactile information176

As introduced in section 1, a natural palpation EP to get information about the stiffness of an177

in-hand object is dynamic. In this respect, it seems evident that a robotic EP should also be dynamic so178
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Figure 4. Architecture of TactNet3D, which is formed by 4 layers, the first two are 3D convolutional
layers with kernel sizes 16 × [5 × 3 × 8] and 32 × [5 × 3 × 8] respectively, and two fully connected
layers with 64 and 24 neurons respectively.

that the information acquired during the whole squeeze-and-release process describes the external179

and internal tactile attributes of an object.180

The pressure information can be represented in multiple ways, commonly as sequences of tactile181

images. However, in this case, a more appropriate structure is in the form of 3D tactile tensors. An182

example of this type of representation is presented in 1(b), which is similar to MRI, except that in183

this case the cross-sectional images contain information about the pressure distribution at the contact184

surface, for different grasping forces.185

To show the advantages of 3D tactile tensors, sectioned tensors of the same sponge, with and186

without hard inclusions, are shown in Fig. 3. The inclusions become perfectly visible as the grasping187

force increases.188

3.4. 3D TactNet189

When using 3D tactile information, it is necessary to control the applied forces to obtain a190

representative pressure-images from a certain object. For 3D CNNs, each tensor has information about191

the whole palpation process. On the other hand, when dealing with soft or shape-changing objects,192

this operation is more challenging using 2D CNNs, as it would be necessary a high amount of training193

data, or selected data captured at optimal pressure levels, which also depends on the stiffness of each194

object.195

In previous works, we trained and validated multiple 3D CNNs with different structures and196

hyperparameters to discriminate deformable objects in a fully-supervised collection and classification197

process [35]. Here, although the classification is still supervised, the grasping and data collection198

processes have been carried out autonomously by the robotic manipulator. According to the results of199

our previous work, the 3D CNN with highest recognition rate, and compatible with the size of the200

3D tensors read from our tactile sensor, was a neural network with four layers, where the first two201

were 3D convolutional, and the last two were fully connected layers. The network’s parameters have202

been slightly modified to fit a higher number of classes and to adjust the new 3D tensor, which has a203

dimension of [28 × 50 × 51].204

The architecture of this network, called TactNet3D, is presented in Fig. 4. This network has two 3D205

convolutional layers (C = [3D conv1 , 3D conv2]) with kernels 16 × [3 × 5 × 8] and 32 × [3 × 5 × 8]206

respectively, and two fully connected layers (F = [fc3, fc4]) with 64 and 24 neurons respectively. Each207

convolutional layer also includes Rectified Linear Unit (ReLU), batch normalization with ε = 10−5,208

and max-pooling with filters and stride equal to 1. Besides, fc3 incorporated a dropout factor of 0.7 to209

prevent overfitting. Finally, a softmax layer is used to extract the probability distribution of belonging210

to each class. The implementation, training and testing of this network has been done using the Deep211

Learning Toolbox in Matlab.212
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(a)

(b)

(c)

Figure 5. Pictures of the 24 objects used in experiments. Rigid objects (a), from left to right: bottle of
coke, energy drink can, mouse 1, mouse 2, bottle of ice tea, skate wheel, soda can, and bottle of water.
Deformable objects (b), from left to right: ball 1, ball 2, sponge rough, sponge rough with inclusions,
sponge scrunchy, sponge soft, sponge soft with inclusions, and sponge pipe. In-bag objects (c), from
left to right: gears, mixed nuts, mixed washer, M6 nuts, M8 nuts, M10 nuts, rivets and rubber pipes

4. Experimental Protocol and Results213

This section presents the procedure for the dataset collection and the experiments. The dataset is214

conformed by 3 subsets of data: Rigid, deformable, and in-bag objects, which are described in more215

detailed below. Similarly, 4 experiments have been carried out to show the performance of the method216

and compare the results of dynamic and static methods: Experiment 1 for rigid objects, experiment 2217

for deformable objects, experiment 3 for in-bag objects, and experiment 4 for the whole dataset.218

4.1. Dataset219

4.1.1. Collection process220

The dataset collection process consists of capturing sequences of tactile images and creating a 3D221

tactile tensor. For this purpose, the underactuated gripper holds an object and applies incremental222

forces while recording images over the whole palpation process. Each object, depending on its internal223

physical attributes, has a unique tactile frame for each amount of applied force. The dataset collection224

has been carried out by the gripper, recording 51 tactile frames per squeeze. This process is made by225

the two active fingers of the gripper, which are moved by the two smart servos in torque control mode226

with incremental torque references. Finally, 1440 3D tactile tensors have been obtained, for a total of 24227

objects with 60 tactile tensors each. In Fig. 1 (c), a grasping sequence is shown. The sequence at the top,228

from the left to the right, shows the grasping sequence due to the progressive forces applied by the229

underactuated gripper to the ball 2, and the sequence at the bottom, from the left to the right, shows230

the tactile images captured by the pressure sensor.231

For machine learning methods, it is important to have the greatest possible variety in the dataset.232

In order to achieve this goal, the incremental torque is increased in random steps, so that the applied233

forces between two consecutive frames is different in each case. This randomness is also applied due234

to the intention to take a dataset that imitates the palpation procedure that could be carried out by a235

human, in which the exact forces are not known. Another fact that has been considered for the dataset236

collection process is that the force is applied to the object through the fingers of the gripper, therefore237
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Figure 6. Experimental results of the experiment with rigid objects (a), deformable objects (b), in-bag
objects (c), and all objects (d). Error bars represent the standard deviation σ of each recognition rate
distribution over a 20 sample testing process.

non homogeneous pressure is exerted on the whole surface of the object. Therefore, in order to obtain238

all of the internal features of the objects, multiple grasps with random positions and orientations of the239

objects have been obtained.240

4.1.2. Rigid objects241

Eight objects of the dataset are considered as rigid because they barely change their shape when242

the gripper tightens them. The rigid dataset is composed of subsets of objects with similar features243

(e.g., the subset of bottles and the subset of cans) which are very different from each other. The subset244

of rigid objects is shown in 5 (a).245

4.1.3. Deformable objects246

Another subset of the dataset are the deformable objects. This subset consists of eight objects that247

change substantially his initial shape when a pressure is applied over it, but recover its initial shape248

when the pressure ends. This subgroup also has objects with similar elasticity (e.g., balls and sponges).249

The set of deformable objects is shown in 5 (b).250

4.1.4. In-bag objects251

The last subset of objects included in the dataset is composed by plastic bags with a number of252

small objects. Bags are shuffled before every grasp, so that the objects in the bag are placed in different253
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Figure 7. Confusion matrices of the methods, from left to right, TactNet3D, TactNet6, VGG16_SVM
and ResNet50_NN, in experiments with rigid objects (a), deformable objects (b) and in-bag objects (c).
All the methods are trained using data from 2 grasps.

positions and orientations. Hence, the tactile images are different depending on the position of the254

objects. Another characteristic of this group is that in-bag objects may change their position randomly255

during the grasping process. As in the other subgroups, bags with similar objects have been chosen256

(e.g., M6, M8 or M10 nuts). In-bag objects are shown in 5 (c).257

4.2. Experiments and results258

According to [45], three approaches can be followed to classify tactile data with 2D CNNs: training259

the network from scratch (method 1), using a pre-trained network with standard images and re-training260

the last classification layers (method 2), or changing the last layers by other estimator (method 3).261

The best results for each approach were obtained by TactNet6, ResNet50_NN, and VGG16_SVM,262

respectively. In this work, four experiments have been carried out to validate and compare the263

performance of TactNet3D against these 2D CNNs structures considering only the subset of rigid264

objects, the subset of deformable objects, the subset of in-bag objects, and the whole dataset. The265

training, validation and test sets to train the 2D CNN-based methods are formed using the individual266

images extracted from the 3D tactile tensors.267

The performance of each method has been measured in terms of recognition accuracy. Each268

network has been trained 20 times with each subset and the mean recognition rate and standard269

deviation for each set of 20 samples have been compared in Fig. 6, where for each experiment, the270

results of each method have been obtained using data from 1, 2, 5, 10 and 20 grasps of each object.271
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Figure 8. Confusion matrices of the methods, from left to right, TactNet3D, TactNet6, VGG16_SVM
and ResNet50_NN, in the experiments with the whole dataset. All the methods are trained using data
from 2 grasps.

Moreover, representative confusion matrices for each method trained in subsets of rigid,272

deformable, and in-bag objects are presented in Fig. 7. In contrast, the confusion matrices related to273

the whole dataset are presented in Fig. 8. These confusion matrices have been obtained for the case274

in which each method is trained using data from two grasps to show the differences in classification275

performance.276

5. Discussion277

Regarding the performance of TactNet3D in comparison with 2D CNN-based methods, the results278

shown in 6 prove that the recognition rate of the first one is better than the latter in all the studied cases.279

For all kinds of objects, rigid, deformable, or in-bag, and all the amount of grasps used as training data,280

TactNet3D outperforms 2D CNNs.281

Also, the differences in classification accuracy are higher when the number of training data is282

lower, getting better results when training TactNet3D with one or two grasps than 2D CNNs with283

five or ten grips in some cases. Therefore, it is not only shown that the performance is better, but also284

the adaptability of TactNet3D as the amount of data needed to train the network is lower, which is285

especially interesting for online-learning.286



Version January 21, 2024 submitted to Sensors 12 of 15

Besides, in the misclassification cases, the resulting object class given by TactNet3D has almost287

indistinguishable physical features to those of the grasped object, unlike 2D CNNs, which may provide288

disparate results, as can be seen in the confusion matrices presented in Fig. 7 and 8. Looking at some289

object subsets with similar physical features such as the sponges, the different bag of nuts or the cans,290

it can be observed that the output given by TactNet3D corresponds to objects form the same subset,291

whereas 2D CNNs output classes of objects with different features in some cases (e.g., bottle of coke292

and M10 nuts in Fig. 8 bottom left). This phenomena is interesting from the neurological point of view293

of artificial touch sense as 3DTactNet behaves more similar to human beings’ sense of touch. However,294

a broad study of this aspect is out of the scope of this paper and will be considered in future works.295

6. Conclusions296

A novel method for the active tactile perception based on 3D CNN has been presented and used for297

an object recognition problem in a new robot gripper design. This gripper includes two underactuated298

fingers that accommodate to the shape of different objects, and have additional proprioceptive sensors299

to get its actual position. A tactile sensor has been integrated into the gripper, and a novel representation300

of sequences of tactile images as 3D tactile tensors has been described.301

A new 3D CNN has been designed and tested with a set of 24 objects classified in three main302

categories that include rigid, deformable, and in-bag objects. There are very similar objects in the set,303

and objects that have changing and complex shapes such as sponges or bags of nuts, to assess the304

recognition capabilities. 3D CNN and classical CNN with 2D tensors have been tested for comparison.305

Both perform well with high recognition rates when the amount of training data is high. Nevertheless,306

3D CNN gets higher performance even with a lower number of training samples, and misclassification307

is obtained just in very similar classes.308

As future works, we propose the use of additional proprioceptive information to train309

multi-channel neural networks using the kinesthetic information about the shape of the grasped310

object, along with the tactile images for multi-modal tactile perception. Also, the use of other dynamic311

approaches, such as temporal methods (e.g., LSTMs), for both tactile-based and multi-modal-based312

perception strategies, need to be addressed in more detail. Moreover, a comparison of new active313

tactile perception methods will be studied in depth.314

Author Contributions: conceptualization, F.P. and J.M.G.; software, F.P.; validation, F.P., J.G.G. and J.M.G.;315

investigation, F.P. J.G.G. and J.M.G.; data curation, F.P.; writing—original draft preparation, F.P., J.G.G. and316

J.M.G.; writing—review and editing, J.G.G. and J.M.G.; visualization, F.P. and J.M.G.; supervision, J.G.G; project317

administration, A.G.C. and J.G.G; funding acquisition, A.G.C.318

Funding: This research was funded by the University of Málaga, the Ministerio de Ciencia, Innovación y319

Universidades, Gobierno de España, grants number DPI2015-65186-R and RTI2018-093421-B-I00, and the European320

Commission, grant number BES-2016-078237.321

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the322

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to323

publish the results.324

References325

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural326

Networks. Advances In Neural Information Processing Systems 2012, pp. 1–9.327

2. Cao, L.; Sun, F.; Liu, X.; Huang, W.; Kotagiri, R.; Li, H. End-to-End ConvNet for Tactile Recognition Using328

Residual Orthogonal Tiling and Pyramid Convolution Ensemble. Cognitive Computation 2018, pp. 1–19.329

3. Shibata, A.; Ikegami, A.; Nakauma, M.; Higashimori, M. Convolutional Neural Network based Estimation330

of Gel-like Food Texture by a Robotic Sensing System. Robotics 2017, 6.331

4. Gandarias, J.M.; Gómez-de Gabriel, J.M.; García-Cerezo, A.J. Tactile Sensing and Machine Learning for332

Human and Object Recognition in Disaster Scenarios. Third Iberian Robotics conference. Springer, 2017.333

5. Vidal-Verdú, F.; Oballe-Peinado, Ó.; Sánchez-Durán, J.A.; Castellanos-Ramos, J.; Navas-González, R. Three334

realizations and comparison of hardware for piezoresistive tactile sensors. Sensors 2011, 11, 3249–3266.335



Version January 21, 2024 submitted to Sensors 13 of 15

6. Chathuranga, D.S.; Wang, Z.; Noh, Y.; Nanayakkara, T.; Hirai, S. Magnetic and Mechanical Modeling of a336

Soft Three-Axis Force Sensor. IEEE Sensors Journal 2016, 16, 5298–5307.337

7. Ward-Cherrier, B.; Pestell, N.; Cramphorn, L.; Winstone, B.; Giannaccini, M.E.; Rossiter, J.; Lepora, N.F. The338

TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies. Soft Robotics 2018,339

5, 216–227.340

8. Gong, D.; He, R.; Yu, J.; Zuo, G. A pneumatic tactile sensor for co-operative robots. Sensors 2017, 17, 2592.341

9. Maiolino, P.; Maggiali, M.; Cannata, G.; Metta, G.; Natale, L. A Flexible and Robust Large Scale Capacitive342

Tactile System for Robots. IEEE Sensors Journal 2013, 13, 3910–3917.343

10. Gandarias, J.M.; Gómez-de Gabriel, J.M.; García-Cerezo, A.J. Enhancing Perception with Tactile Object344

Recognition in Adaptive Grippers for Human–Robot Interaction. Sensors 2018, 18, 692.345

11. Chitta, S.; Sturm, J.; Piccoli, M.; Burgard, W. Tactile sensing for mobile manipulation. IEEE Transactions on346

Robotics 2011, 27, 558–568.347

12. James, J.W.; Pestell, N.; Lepora, N.F. Slip Detection With a Biomimetic Tactile Sensor. IEEE Robotics and348

Automation Letters 2018, 3, 3340–3346.349

13. Romeo, R.; Oddo, C.; Carrozza, M.; Guglielmelli, E.; Zollo, L. Slippage Detection with Piezoresistive Tactile350

Sensors. Sensors 2017, 17, 1844.351

14. Gandarias, J.M.; Gomez-de Gabriel, J.M.; Garcia-Cerezo, A. Human and object recognition with a352

high-resolution tactile sensor. IEEE Sensors Conference, 2017.353

15. Luo, S.; Mou, W.; Althoefer, K.; Liu, H. Iterative Closest Labeled Point for Tactile Object Shape Recognition.354

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016.355

16. Yuan, Q.; Wang, J. Design and Experiment of the NAO Humanoid Robot’s Plantar Tactile Sensor for356

Surface Classification. 4th International Conference on Information Science and Control Engineering357

(ICISCE), 2017.358

17. Hoelscher, J.; Peters, J.; Hermans, T. Evaluation of tactile feature extraction for interactive object recognition.359

IEEE-RAS International Conference on Humanoid Robots, 2015.360

18. Luo, S.; Bimbo, J.; Dahiya, R.; Liu, H. Robotic tactile perception of object properties: A review. Mechatronics361

2017, 48, 54–67.362

19. Trujillo-Leon, A.; Bachta, W.; Vidal-Verdu, F. Tactile Sensor-Based Steering as a Substitute of the Attendant363

Joystick in Powered Wheelchairs. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2018,364

26, 1381–1390.365

20. Schiefer, M.A.; Graczyk, E.L.; Sidik, S.M.; Tan, D.W.; Tyler, D.J. Artificial tactile and proprioceptive feedback366

improves performance and confidence on object identification tasks. PLOS ONE 2018, 13.367

21. Bartolozzi, C.; Natale, L.; Nori, F.; Metta, G. Robots with a sense of touch. Nature Materials 2016, 15, 921–925.368

22. Jamone, L.; Natale, L.; Metta, G.; Sandini, G. Highly Sensitive Soft Tactile Sensors for an Anthropomorphic369

Robotic Hand. IEEE Sensors Journal 2015, 15, 4226–4233.370

23. Roncone, A.; Hoffmann, M.; Pattacini, U.; Fadiga, L.; Metta, G. Peripersonal space and margin of safety371

around the body: Learning visuo-tactile associations in a humanoid robot with artificial skin. PLoS ONE372

2016, 11, e0163713.373

24. Tanaka, Y.; Nagai, T.; Sakaguchi, M.; Fujiwara, M.; Sano, A. Tactile sensing system including bidirectionality374

and enhancement of haptic perception by tactile feedback to distant part. IEEE World Haptics Conference375

(WHC), 2013, pp. 145–150.376

25. Luo, S.; Mou, W.; Althoefer, K.; Liu, H. Novel Tactile-SIFT Descriptor for Object Shape Recognition. IEEE377

Sensors Journal 2015, 15, 5001–5009.378

26. Lee, H.; Wallraven, C. Exploiting object constancy: Effects of active exploration and shape morphing on379

similarity judgments of novel objects. Experimental brain research 2013, 225, 277–289.380

27. Lepora, N.F. Biomimetic Active Touch with Fingertips and Whiskers. IEEE Transactions on Haptics 2016,381

9, 170–183.382

28. Okamura, A.M. Feature Detection for Haptic Exploration with Robotic Fingers. The International Journal of383

Robotics Research 2001, 20, 925–938.384

29. Lepora, N. Active Tactile Perception. In Scholarpedia of Touch; Atlantis Press, 2016; pp. 151–159.385

30. Dahiya, R.S.; Metta, G.; Valle, M.; Sandini, G. Tactile sensing-from humans to humanoids. IEEE Transactions386

on Robotics 2010, 26, 1–20.387



Version January 21, 2024 submitted to Sensors 14 of 15

31. Zapata-Impata, B.; Gil, P.; Torres, F.; Zapata-Impata, B.S.; Gil, P.; Torres, F. Learning Spatio Temporal Tactile388

Features with a ConvLSTM for the Direction Of Slip Detection. Sensors 2019, 19, 523.389

32. Drimus, A.; Kootstra, G.; Bilberg, A.; Kragic, D. Design of a flexible tactile sensor for classification of rigid390

and deformable objects. Robotics and Autonomous Systems 2014, 62, 3–15.391

33. Dolz, J.; Desrosiers, C.; Ayed, I.B. 3D fully convolutional networks for subcortical segmentation in MRI: A392

large-scale study. NeuroImage 2018, 170, 456–470.393

34. Chaddad, A.; Desrosiers, C.; Niazi, T. Deep radiomic analysis of MRI related to Alzheimer’s Disease. IEEE394

Access 2018, 6, 58213–58221.395

35. Gandarias, J.M.; Pastor, F.; García-Cerezo, A.J.; Gómez-de Gabriel, J.M. Active Tactile Recognition of396

Deformable Objects with 3D Convolutional Neural Networks. IEEE World Haptics Conference (WHC),397

2019, pp. 551–555.398

36. Feng, D.; Kaboli, M.; Cheng, G. Active Prior Tactile Knowledge Transfer for Learning Tactual Properties of399

New Objects. Sensors 2018, 18, 634.400

37. Kaboli, M.; Cheng, G. Robust Tactile Descriptors for Discriminating Objects From Textural Properties via401

Artificial Robotic Skin. IEEE Transactions on Robotics 2018, pp. 1–19.402

38. Baishya, S.S.; Bauml, B. Robust material classification with a tactile skin using deep learning. IEEE/RSJ403

International Conference on Intelligent Robots and Systems (IROS), 2016.404

39. Jamali, N.; Sammut, C. Majority voting: Material classification by tactile sensing using surface texture.405

IEEE Transactions on Robotics 2011, 27, 508–521.406

40. Liu, H.; Song, X.; Nanayakkara, T.; Seneviratne, L.D.; Althoefer, K. A computationally fast algorithm for407

local contact shape and pose classification using a tactile array sensor. IEEE International Conference on408

Robotics and Automation (ICRA), 2012.409

41. Martinez-Hernandez, U.; Dodd, T.J.; Prescott, T.J. Feeling the Shape: Active Exploration Behaviors for410

Object Recognition With a Robotic Hand. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2017,411

pp. 1–10.412

42. Yi, Z.; Calandra, R.; Veiga, F.; van Hoof, H.; Hermans, T.; Zhang, Y.; Peters, J. Active tactile object exploration413

with gaussian processes. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),414

2016.415

43. Corradi, T.; Hall, P.; Iravani, P. Bayesian tactile object recognition: Learning and recognising objects using a416

new inexpensive tactile sensor. IEEE International Conference on Robotics and Automation (ICRA), 2015.417

44. Albini, A.; Denei, S.; Cannata, G. Human Hand Recognition From Robotic Skin Measurements in418

Human-Robot Physical Interactions. IEEE/RSJ International Conference on Intelligent Robots and419

Systems (IROS), 2017.420

45. Gandarias, J.M.; García-Cerezo, A.J.; Gómez-de Gabriel, J.M. CNN-based Methods for Object Recognition421

with High-Resolution Tactile Sensors. IEEE Sensors Journal 2019.422

46. Falco, P.; Lu, S.; Cirillo, A.; Natale, C.; Pirozzi, S.; Lee, D. Cross-modal visuo-tactile object recognition using423

robotic active exploration. IEEE International Conference on Robotics and Automation (ICRA), 2017.424

47. Luo, S.; Liu, X.; Althoefer, K.; Liu, H. Tactile object recognition with semi-supervised learning. International425

Conference on Intelligent Robotics and Applications, 2015.426

48. Khasnobish, A.; Jati, A.; Singh, G.; Bhattacharyya, S.; Konar, A.; Tibarewala, D.; Kim, E.; Nagar, A.K.427

Object-shape recognition from tactile images using a feed-forward neural network. International Joint428

Conference on Neural Networks (IJCNN), 2012.429

49. Schmitz, A.; Bansho, Y.; Noda, K.; Iwata, H.; Ogata, T.; Sugano, S. Tactile object recognition using deep430

learning and dropout. IEEE-RAS International Conference on Humanoid Robots, 2014.431

50. Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face recognition: A convolutional neural-network approach.432

IEEE Transactions on Neural Networks 1997, 8, 98–113.433

51. Albini, A.; Denei, S.; Cannata, G. Human hand recognition from robotic skin measurements in human-robot434

physical interactions. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,435

2017, pp. 4348–4353.436

52. Madry, M.; Bo, L.; Kragic, D.; Fox, D. ST-HMP: Unsupervised Spatio-Temporal feature learning for tactile437

data. IEEE International Conference on Robotics and Automation (ICRA), 2014.438

53. Liu, H.; Guo, D.; Sun, F. Object Recognition Using Tactile Measurements: Kernel Sparse Coding Methods.439

IEEE Transactions on Instrumentation and Measurement 2016, 65, 656–665.440



Version January 21, 2024 submitted to Sensors 15 of 15

54. Kerzel, M.; Ali, M.; Ng, H.G.; Wermter, S. Haptic material classification with a multi-channel neural441

network. International Joint Conference on Neural Networks (IJCNN), 2017.442

55. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d443

convolutional networks. Proceedings of the IEEE international conference on computer vision, 2015, pp.444

4489–4497.445

56. Birglen, L.; Laliberté, T.; Gosselin, C.M. Underactuated robotic hands; Vol. 40, Springer, 2007.446

c© 2024 by the authors. Submitted to Sensors for possible open access publication under the terms and conditions447

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).448

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Tactile object recognition
	Tactile perception based on pressure images
	CNNs-based tactile perception
	Active tactile perception

	Materials and Methods
	Underactuated gripper
	Tactile Sensor
	Representation of active tactile information
	3D TactNet

	Experimental Protocol and Results
	Dataset
	Collection process
	Rigid objects
	Deformable objects
	In-bag objects

	Experiments and results

	Discussion
	Conclusions
	References

