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Abstract—Recent advances in the field of intelligent robotic
manipulation pursue providing robotic hands with touch sen-
sitivity. Haptic perception encompasses the sensing modalities
encountered in the sense of touch (e.g., tactile and kinesthetic
sensations). This letter focuses on multimodal object recognition
and proposes analytical and data-driven methodologies to fuse
tactile- and kinesthetic-based classification results. The proce-
dure is as follows: a three-finger actuated gripper with an
integrated high-resolution tactile sensor performs squeeze-and-
release Exploratory Procedures (EPs). The tactile images and
kinesthetic information acquired using angular sensors on the
finger joints constitute the time-series datasets of interest. Each
temporal dataset is fed to a Long Short-term Memory (LSTM)
Neural Network, which is trained to classify in-hand objects.
The LSTMs provide an estimation of the posterior probability
of each object given the corresponding measurements, which
after fusion allows to estimate the object through Bayesian and
Neural inference approaches. An experiment with 36-classes is
carried out to evaluate and compare the performance of the
fused, tactile, and kinesthetic perception systems. The results
show that the Bayesian-based classifiers improves capabilities for
object recognition and outperforms the Neural-based approach.

Index Terms—Deep Learning in Grasping and Manipulation;
Sensor Fusion; Force and Tactile Sensing

I. INTRODUCTION

TOUCH sense is essential for human beings. One com-
monly refers to touch sensing as the sensations perceived
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Fig. 1. Representative schematic of the proposed methodology. Sequences of
tactile images feed the tactile network, and the time-series of the joint angles
of the gripper feed the kinesthetic network. The activation of the last layers
of each network are fused to output an estimated output class.

through the skin, including tactile and kinesthetic sensations.
Kinesthetic data is perceived as two sources of information,
the data received from the relative position of limbs and the
dynamical forces exerted by the muscles. The combination of
kinesthetic and tactile information defines the haptic percep-
tion terminology. We would not be able to carry out many vital
activities without the sensations perceived in this sense. This
requirement is also present in the field of robotics [1]–[3].
Recent advances on intelligent robotic systems consider the
integration of artificial touch sense to improve perception [4],
[5].
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Humans are capable of carrying out extremely complex
manipulation tasks even without looking at the grasped ob-
jects. This illustrates our high capability for haptic recognition,
which allows us to distinguish objects just by touch. Many
of these tasks are yet impossible for the most advanced
robots [6]. Nonetheless, multiple robotic applications benefit
from autonomous manipulation, such as search-and-rescue [7],
healthcare [8], or [9]. In essence, haptic perception results
integral for those applications where vision is compromised
due to inadequate light conditions, absence of textures or
variety of colors.

This letter tackles the problem of haptic object recognition
considering the fusion of temporal tactile and kinesthetic
information. In particular, LSTMs-based models to process
the time-series of haptic data are proposed. It results intuitive
thinking that the fusion of tactile and kinesthetic information
will lead to an enhanced object recognition process, thus lim-
iting the shortcomings arising from the single sensing modal-
ities. The performance of multisensor inference is addressed
using both classical (i.e., analytic, deterministic or Bayesian)
and data-driven (i.e., machine learning- or neural-based) in-
ference. A Bayesian fusion strategy is presented, for which
the discrete probabilities for classification estimated by the
pertinent LSTMs participate in a maximum a posteriori (MAP)
estimation problem. The optimal fusion rule corresponds to the
joint posterior distribution derived from the MAP estimator.
Besides, a data-driven fusion approach, in which a fully-
connected layer learns to fuse discrete probabilities estimated
by the pertinent LSTMs is also presented. A representative
schema of our methodology is shown in Fig. 1. In particular,
the main contributions of this work are:

• A LTSM-based methodology for haptic object recognition
via tactile and kinesthetic sensing modalities.

• Formulation of multimodal data fusion for classification
based on Bayesian and Neural-based approaches.

• Integration and evaluation of the proposed methodology
with real data collected from a sensorized, three-finger
underactuated gripper.

The performance of the proposed methodology is evaluated in
a 36-classes experiment, including a comparison between the
Bayesian and Neural fusion approaches, and the tactile and
kinesthetic perception systems with reduced data redundancy.
The code and dataset are publicly available in a GitHub
repository 1.

This paper is organized as follows: Section II presents
the related work and the state-of-art in object recognition.
Section III details the problem of haptic perception for object
recognition. In Section IV-A, the methods for Bayesian and
Neural data fusion for classification problems are described.
The experimental protocol is presented Section V, followed by
the discussion on the obtained results in Section VI. Finally,
Section VII presents the conclusions and prospective research
work.

1https://github.com/fpastorm/LSTM-Haptic-Fusion

TABLE I
STATE-OF-ART ON MULTIMODAL PERCEPTION WITH HAPTIC PROPERTIES

(V REFERS TO VISION).

Year/Work Approach Properties

2011 / [26] Data-driven V+Audio
2016 / [27] Data-driven V+Pressure+Vibration+Temperature
2017 / [28] Analytical V+Pressure Images
2017 / [29] Data-driven V+Pressure Images
2018 / [30] Analytical V+Proprioception
2019 / [31] Data-driven V+Force+Proprioception

2013 / [32] Analytical Pressure+Vibration+Temperature
2017 / [33] Data-driven Temperature+Vibration+Force
2018 / [34] Analytical Temperature+Vibration
2019 / [35] Analytical Pressure Images+Proprioception

2020 / [Ours] Hybrid Pressure Images+Proprioception

II. RELATED WORK

A. Surface and In-hand Object Recognition

The problem of tactile-based object recognition has been
studied in a variety of works. One common approach relates
to surface or material discrimination [10]. A system for
the estimation of surface friction is proposed in [11]. The
system uses machine learning to distinguish textures detected
by a bio-inspired artificial finger, achieving recognition rates
around 95%. A haptic EP is presented in [12] for recognizing
object surfaces with an intelligent finger. Supervised learning
algorithms are evaluated and compared achieving classification
accuracies of 88.5%. GelSight, a camera-based tactile sensor,
is another convenient option for this problem, allowing to
deal with tactile textures as images [13]. However, surface
recognition approaches would not be a good strategy for in-
hand object recognition, especially when dealing with different
objects made of the same material. For this reason, other tactile
properties such as stiffness or shape are reliable sources of
information for in-hand manipulation tasks.

Many of the haptic perception approaches solely exploit
static tactile information. Traditional computer vision and
machine learning methods have been used to face the prob-
lem of tactile object recognition [14]. The work presented
in [15] uses a feature-based matching technique from tactile
images obtained with GelSight, while deep learning algorithms
were proposed in [16], [17]. Nevertheless, other researchers
faced the tactile object recognition problem by considering
dynamic tactile information. Some studies have followed this
approach with different methodologies [18]–[20]. A tactile-
based method to identify the Center of Mass of rigid objects
for object discrimination is presented in [21]. Long Short-term
Memory (LSTM) Neural Networks have proven excellent re-
sults when dealing with sequential tactile data [22]. Transfer
learning is a recent alternative option explored for computer
vision applied to recognition, as in [16], [23]–[25].

B. Tactile-based Object Recognition via Multiple Physical
Properties

Multimodal perception is an important research topic in
robotics. Fusing multiple sources of information provides
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Fig. 2. Excerpt of time sequences of tactile and kinesthetic data during the EP (a). Tactile information (b) consist of series of tactile images. Note that in this
figure, six tactile images are represented to illustrate the variation of the pressure distribution along the sequence. Kinesthetic information (c) is formed by
the variation of the joints position of the underactuated fingers. Here, θal and θar refer to the actuated joint angle of the left and right fingers, respectively;
and θ2l and θ2r refer to the underactuated joint angle of the left and right fingers, respectively. A more detailed description of the underactuated gripper is
presented in section V.

excellent advantages to tackle perception challenges [36]–
[38], and has been extensively used in multiple domains with
excellent results [39]–[41]. Recent trends consider the prob-
lem of integrating multiple haptic or tactile-based sources of
information. Table I summarizes the state-of-art with reference
to multimodal haptic perception, including the methodology
proposed in this work. One of the most common approaches
is based on fusing tactile and visual data [27], [28], [31]. The
joint use of tactile frequencies recorded with a microphone in
contact with the surface and visual images of the objects for
dynamic surface discrimination was introduced in [26]. The
fusion of joint positions and visual information for estimat-
ing the pose of the in-hand object is presented in [30]. A
cross-modal framework for visuotactile object recognition is
proposed in [29]. Nevertheless, these methods might not be a
good strategy in those scenarios where vision is compromised.

Despite the advantages of combining multiple haptic-based
sources for object recognition, just a few research studies have
followed this approach. Kaboli et al. proposed a tactile-based
framework for autonomous exploration and object recognition
based on physical properties [33]. A multimodal tactile sensor
(BioTac ®) was employed in [32], [42] to identify objects
by their compliance, texture, and thermal properties. Luo et
al. proposed a method to synthesize kinesthetic and tactile
information [35]. 3D positions and the pressure value of
each tactel of a sensor formed a 4D-point cloud that feeds
a classification algorithm. The combination of proprioceptive
and tactile data to improve the accuracy in object identification
tasks is presented in [43]. A recursive tactile sensing approach
is proposed in [34] for multimodal material recognition. In
general, standard classifiers (e.g., SVMs, Neural Networks)
output a probabilistic distribution where each class gets a
probability that can be easily exploited by Bayesian and Neural
approaches.

III. HAPTIC PERCEPTION FOR OBJECT RECOGNITION

There are multiple ways of carrying out an Exploratory
Procedure (EP) to obtain different haptic information [44].
In the particular case of discerning in-hand objects, stiffness
and shape are two of the most relevant haptic features. A
natural EP to perceive information about the stiffness of
in-hand objects is to palpate them during a squeeze-and-
release process. Besides, kinesthetic information of the fingers’
position during this EP provides data about shape. Fig. 2 (a)
shows an excerpt from the EP followed in this work.

Similarly, there are many ways of measuring, representing,
and processing tactile data. On the one hand, pressure images
are collected from a tactile sensor formed by a pressure sensor
array. The details of the sensor are described in section V.
Tactile data for each grasp are represented as sequences of
tactile images (see Fig. 2 (b)). On the other hand, kinesthetic
perception usually relates to the information perceived through
the muscles or joints of the body. In particular, kinesthetic
sensations allow us to know the dynamic spatial configuration
of our body (relative position) and the dynamical efforts of our
muscles (forces). In this work, only the first type of kinesthetic
information is used. As represented in Fig 2 (c), the dynamic
kinesthetic information is represented as time series of the joint
angles of the fingers (θal, θar, θ2l, and θ2r). The subindex
a refers to the actuator joint, the sub-index 2 refers to the
second joint of the finger (in this case, the underactuated joint),
and the sub-indices r and l refer to the right and left fingers,
respectively.

As represented in Fig. 1, the core element within both tactile
and kinesthetic models is the LSTM layer. Long Short-term
Memory networks [45] are a special kind of Recurrent Neural
Network (RNN) that adds long-term memory to RNN by
allowing a constant error back-propagation within their inner
memory cells. This fact makes them a very good choice to
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process information with a robust temporal structure, even
if the temporal relation is not immediate, and their use is
prevalent in predictive [46] and classification [47] problems.

In this work, sequences of tactile images are used to train the
tactile model. This model uses only one ConvLSTM [48] layer.
The ConvLSTM layer is followed by a fully-connected layer
with 36 neurons (which match the number of classes of the
experiment presented in section V), and a Softmax function to
provide the output classification distribution (p (c|xtac)). The
kinesthetic model, on the other hand, uses two LSTMs [45] to
allow a progressive codification of its vector to shape temporal
data. The second LTSM is followed by a fully-connected layer
with 36 neurons and a Softmax function to provide the output
classification probability distribution (p (c|xkin)).

After training the tactile and kinesthetic models, the classi-
fication outputs from each model when classifying an unseen
object can differ depending on the input data and the training
process. Hence, to achieve an accurate and robust classification
performance, the outputs from each model are fused in an
analytical and a data-drive classification approach. The next
section describes the proposed fusion methodologies.

IV. BAYESIAN AND NEURAL INFERENCE METHODOLOGY

A. Bayesian Data Fusion for Probabilistic Classification

Let us define xi ∈ Xi as the observations from a particular
set upon which the classification problem is resolved (i.e.,
the tactile images xtac and the kinesthetic information xkin).
The class labels c ∈ Y are defined prior to the training,
and the total number of labels is denoted with N . Let H
be the family of classifiers considered (i.e., the output of
afore-described LSTMs, considering haptic and kinesthetic
sensing respectively). A classifier behaves as mapping function
between the sample and the label spaces, h ∈ H, h : X 7→ Y .
In general, classifiers can be categorized as ordinaries or prob-
abilistic [49]. This work focuses on the latter, with a classifier
estimating a conditional discrete probability function, such that
each class is assigned a correspondence probability [50].

Thus, we obtain posterior distributions
p (c|xtac) , p (c|xkin) from the LSTMs using tactile and
kinesthetic data respectively. To ease the notation, hereinafter
we refer to tactile and kinesthetic data as x1 and x2

respectively. The classifier posterior distributions can be then
modeled as categorical

p (c|xi) =

N∏
j=1

p
[c=j]
j|i , (1)

where pj|i denotes the probability for the j-th class given the
i-th classifier, and the Iverson bracket [c = j] is an indicator
function that returns 1 if c = i and 0 otherwise. The a priori
class probability p (c) is categorical as well and is defined by
the probabilities pj|0, which in the equiprobable case result in

Fig. 3. Schematic illustration of the data-driven inference method. Tactile and
Kinesthetic outputs are concatenated and fed to a two-layer fully-connected
network that learns to fuse the probability distributions from tactile and
kinesthetic classifiers. The numbers in parentheses establish the length of the
input and output vectors and the number of neurons of the dense layers.

pj|0 = 1/N , ∀j. The optimal fusion rule is provided by the
joint posterior distribution as

p (c|x1,x2) =
p (x2|c,x1) · p (c|x1)

p (x2|x1)

∝ p (c|x2) · p (c|x1)

p(c)

=

N∏
j=1

( pj|1 · pj|2
pj|0︸︷︷︸

prior class prob.

)[c=j]

, (2)

where we have used that x2 and x1 are conditionally indepen-
dent given c. The resulting joint distribution is again modeled
as categorical random variable from which the mode (i.e., the
estimated class) can be easily found as the class with the
MAP probability. As a consequence of using MAP estimation,
computation of the normalizing constant p (x2|x1) /p (x2) is
not required in the joint distribution, which can be easily
obtained by normalization.

B. Neural-driven Data Fusion for Classification

A data-driven approach leverages on supervised ML algo-
rithms to imitate (learn) fusion rules based on a set of training
data. Such rules would, under an asymptotic regime or when
fed large volumes of data, recreate the statistical inference
basis, as well as some hidden rules directly related to the
problem of interest. This approach can be adopted in two ways:
i) training an entire multichannel network at once [51]; ii)
training each channel’s network separately, and then training
a fusion layer [52]. The latter is the solution adopted in this
letter to compare the results of neuronal and Bayesian fusion.

Our neural solution consists of a two-layer fully-connected
network which interprets the outputs from the tactile and
kinesthetic networks as inputs, and learns to fuse the haptic
data —i.e., learns the data fusion axioms. A representative
scheme of the method is depicted in Fig. 3. The discrete
probability distributions given by the tactile and kinesthetic
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Fig. 4. Pictures of the 36 objects used in experiments. From left to right:1. antiseptic bottle, 2. ball1, 3. shampoo, 4. body gel, 5. ball2, 6. bottle of coke,
7. green bricks, 8. mixed bricks, 9. red bricks, 10. yellow bricks, 11. energy drink can, 12. flux paste, 13. gears, 14. ball3, 15. mouse1, 16. mixed nuts,
17. mixed washer, 18. mouse2, 19. bottle of ice tea, 20. M10 nuts, 21. M6 nuts, 22. M8 nuts, 23. rivets, 24. skate wheel, 25. rubber pipes, 26. soda can,
27. sponge rough, 28. sponge rough with inclusions, 29. sponge scrunchy, 30. sponge soft, 31. sponge soft with inclusions, 32. sponge pipe, 33. sunscreen,
34. tennis ball, 35. bottle of water, 36. world ball.

classifiers, p (c|xtac) and p (c|xkin) respectively, are concate-
nated to define a single input vector v ∈ R2·N , which feeds the
fusion network. Then, two dense layers formed by 64 neurons
learn to fuse the haptic data. These layers are followed by a
softmax layer of 36 neurons that outputs the fused predicted
class p (c|xtac,xkin), whose (normalized) distribution relates
to a beta distribution. Unlike the analytical method previously
described, this method is based on supervised learning only.
Therefore, the fusion rules to be learned will depend on the
data set used to train the network. Thus, it is not possible to
predict its performance until the method is trained and the
experiments are conducted.

V. EXPERIMENTAL PROTOCOL

This section describes the design and mechanical compo-
nents of the gripper, and the characteristics of the sensors.
Besides, the data collection process followed to obtain the
tactile and kinesthetic information is presented.

A. Underactuated Gripper

The experiments are developed using an underactuated
gripper with three fingers (see Fig. 1), which was mainly
designed and 3D printed for this research. Two of the fingers
are independently actuated with two phalanxes and two DOFs.
These fingers employ a spring to keep a passive torque over
the underactuated joint when no forces are applied. Two
potentiometers (muRata SV01 10kΩ linear) are employed to
measure the distal joint angles. The gripper integrates two
Dynamixel XL450-W250 servos featuring a digital magnetic
encoder (0.088◦ resolution). In order to simplify the experi-
mental setup, the motors integrate an open-loop force control,
where the actuation (pulse-width modulation - PWM) of the
direct current (DC) motors of the smart servos follow a
slow triangular trajectory from a minimum value (5%) to a

maximum (90%) of the maximum torque of 1.4 N ·m of each
actuator. The third fixed finger defines the whole gripper. It
has a planar surface that holds the tactile sensor: a Tekscan
sensor model 6077, with 1400 tactels arranged in a 28 × 50
matrix with a density of 27.6 tactels/cm2. The sensor also has
a silicon pad covering, which protects the sensors, softens, and
distributes the applied pressure.

B. Data Collection

The EP consists of a squeeze-and-release process, during
which both kinesthetic and tactile sequences are collected from
a particular object. The kinesthetic data consist of the angles
between phalanxes θ2r , θ2l and the joint angles of the actuator
θar , θal

, which result in a temporal array θ ∈ R4×K, where
K = 41 is the number of samples of the sequence over time
(see Fig. 2). These sequences are measured using joint position
sensors at the underactuated fingers. Tactile data, on the other
hand, are collected with the tactile sensor of the fixed finger.
Tactile sequences are composed of the variation of pressure
over time P ∈ R28×50×T , where T = 21 is the number of
samples of the sequence over time.

Overall, a dataset of 36 objects (depicted in Fig. 4) with
60 sets of tactile and kinesthetic data (60 grasps) for each
object has been collected, forming a total of 1440 experiments.
To collect data with diverse, but related, tactile features, we
can categorize the objects as rigid, soft, and in-bag objects.
Therefore, objects from each category have similar properties,
which makes the classification problem more challenging.
Besides, hard inclusions (marbles) are inserted inside some
deformable objects in order to determine how well the method
can discriminate identical objects with different internal fea-
tures (see Fig. 5). During the data collection, each object
is manually located by a human operator with an arbitrary
position and orientation to have random data for each grasp.
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Fig. 5. Illustration of the effects of the hard inclusions on the tactile
measurements. A deformable object (sponge) with and without inclusions
(top), and their respective 3D tactile tensors (bottom).

C. Training

With respect to the Bayesian-based inference approach, the
tactile neural network classification model was trained on 15
examples for each class (25% of the total dataset) using 20%
of the training set for validation purposes, over 30 epochs.
Adam optimizer is used with a learning rate of 0.0001 and
Categorical Crossentropy as the loss function. The kinesthetic
neural network classification model is trained on the same 15
examples for each class as the tactile network, using the same
20% of the training set for validation over 700 epochs. Adam
optimizer is used with a learning rate of 0.00001 and also with
Categorical Crossentropy as the loss function. Furthermore,
both tactile and kinesthetic data are normalized before being
used for training and testing. The remaining 45 examples form
the test set.

Regarding the data-driven approach, the tactile and kines-
thetic neural networks classification models are trained as
aforementioned but using ten examples from each class for
training. Then, the fusion neural network is trained using
Adam optimizer with 0.0001 learning rate over 200 epochs
using five examples from each class. Hence, the same 45
examples remain for testing purposes to offer a proper com-
parison with the Bayesian Inference approach.

VI. RESULTS AND DISCUSSION

The performance of the proposed methodology has been
evaluated in terms of the recognition rate. To have meaningful
statistical performance metrics, the training and testing proce-
dures are repeated a total of 20 times.

Each network has been trained and tested in each experi-
ment with random and different training, validation, and test
sets. One aspect to be considered at this point is that, although
the sets of data were different in each experiment, the corre-
sponding data from the same grasp feed the kinesthetic and
tactile models. This means that each model was trained and
tested with the data for the same grasps in each experiment.

This aspect is essential for the proposed approach because
the data that feed each model must come from the same
grasp. The resulting mean Confusion Matrices (CM) for each
classifier (kinesthetic only, tactile only, and fusion-based) are
represented in Fig. 6. These CMs represent the average results
of each classifier for the whole set of experiments.

As shown in Fig. 6, the fusion-based approaches, with the
highest success rate, outperforms the simple tactile and kines-
thetic classifiers. In particular, the Bayesian-based method
presents better performance than the Neural-based one. We
can also see that the success rate is higher for the tactile
classifier than for the kinesthetic one. This statement makes
sense indeed as the sequences of tactile images provide more
information about the shape and stiffness than the kinesthetic
data. Another aspect to mention is that objects from 7 to
10 cannot be identified by any method. These objects are
practically identical, as can be seen in Fig. 4, and are not
distinguishable by the sense of touch, not even by a human.

Fig. 7 presents a box plot for the recognition rates achieved
by the four classifiers. The mean values are: i) tactile model:
80.6%; ii) kinesthetic model: 67.5%; iii) Neural-based model:
81.5%; iv) Bayesian-based model:86.2. Thus, it is evident that
the Bayesian-based method presents the highest recognition
rate, while the tactile model achieves better performance than
the kinesthetic one. However, the tactile probability distribu-
tion presents a higher standard deviation, which means that
the tactile model presents a higher dependency towards the
training data than kinesthetic-based modeling. Moreover, this
outcome reveals the greater independence of the Bayesian-
based model to the training data.

On the one hand, regarding the comparison of the data-
driven and analytical inference approaches, these results reflect
that the Bayesian method outperforms the neural counterpart.
One reason being that the proposed Bayesian inference method
is optimal for the fusion of discrete probability distributions.
This method includes analytical rules for the fusion of this type
of data. However, the neuronal inference method learns these
rules from previous experiences, depending on the training
data. Hence, for the same, small training set, the Bayesian
approach achieves the best performance.

On the other hand, the Neural-based approach could en-
hance its performance considerably when trained on an exten-
sive training set. This method could potentially learn fusion
rules not considered by the Bayesian method and that are
more related to the fusion that we humans perform. This
idea should be handled with caution and studied in depth in
future work. Nevertheless, getting a large amount of tactile
data is a complex task. This problem could be addressed by
different techniques such as a sim-to-real approaches that uses
simulated data to pre-train the models; or using Generative
Adversarial Networks (GANs) or Variational Autoencoders to
generate new data similar to that obtained by the real sensor.
Comparing these outcomes with related works in the field of
multimodal haptic perception is complex. The main reason
is that each approach uses different sensing modalities and
hardware, considering different properties and objects (see
Table I). Li et al. have recently published a review that covers
the most relevant sensor types and solutions of the state-of-art
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Fig. 6. Confusion matrices (CM) for the classifiers, where the abscissa refers to the target or actual class, and the ordinate is the estimated class. The success
or recognition rate is based on the color code depicted on the right. From left to right: i) the CM for the tactile-based classification; ii) the CM for the
kinesthetic-based classification; iii) the classification resulting of the Neural fusion of the tactile- and kinesthetic-based classifiers; iv) the CM of the Bayesian
inference on tactile- and kinesthetic-based classifiers.

Fig. 7. Representation and comparison of the probability distributions of
success achieved by the tactile classifier, the kinesthetic classifier, the Neural,
fusion-based classifier, and the Bayesian, fusion-based classifier.

in the field of tactile perception [53].

VII. CONCLUSIONS

This letter proposed a methodology to fuse tactile and kines-
thetic information for multimodal, haptic object recognition.
A combination of data-driven and analytical methods based on
LSTM, and Bayesian and Neural fusion models was presented.
A squeeze-and-release EP with a three-finger underactuated
gripper was used to collect tactile and kinesthetic dynamic
data from in-hand objects. The haptic data of 36 objects with
different physical properties were acquired to form a dataset
with training and testing purposes. The outcomes of this work
were two-folded: first, from an application point of view, tem-
poral tactile and kinesthetic data are fed to LSTMs to perform
the task of unimodal, haptic object recognition; second, from
an estimation theory point of view, the performance of multi-
sensor fusion classical inference based on a MAP estimator is
compared to that of supervised learning-based inference based
on a fully-connected network.

The experimental results presented in this letter showed the
benefits and potential of combining different haptic sources
of information for multimodal haptic object recognition. In
particular, the proposed methodology exhibits the advantages
of combining advanced deep learning and Bayesian-based
models for high-level and accurate haptic perception. More-
over, these results evidence that, for problems with reduced
data redundancy, classical fusion rules outperform neural-
based inference. Future research shall consider the creation of
a benchmark to tackle the problem of comparing multimodal
haptic-based approaches. Such a benchmark shall include a
large variety of objects with different physical properties,
recording data from multiple sensors to integrate other sources
of haptic information such as inertial measurements, force, or
temperature. Furthermore, the combination of the proposed
multimodal haptic perception approach with vision systems
will also be considered to enhance dexterous manipulation
tasks.
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