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Abstract: In Physical Human-Robot Interaction (pHRI), forces exerted by humans need to be1

estimated to accommodate robot commands to human constraints, preferences, and needs. This2

paper presents a method for the estimation of the interaction forces between a human and a robot3

using a gripper with proprioceptive sensing. Specifically, we measure forces exerted by a human4

limb grabbed by an underactuated gripper in a frontal plane using uniquely the gripper’s own5

sensors. This is achieved via a regression method, trained with experimental data from the values of6

the phalanxes angles and actuator signals. The proposed method is intended for adaptive shared7

control in limb manipulation. Although adding force sensors provide better performance, obtained8

results are accurate enough for this application. This approach requires no additional hardware: it9

relies uniquely on the gripper motor feedback and joint angles. Also, it is computationally cheap, so10

processing times are low enough to allow continuous human-adapted pHRI for shared control.11

Keywords: Physical Human-Robot Interaction; Force Estimation; Underactuated Grippers;12

Adaptation13

1. Introduction14

Recent trends in robotics pursue the incorporation of robotic systems among people Social robots15

are taking on increasing importance, mostly for care applications, i.e. helping patients [1] or elderly16

people [2]. Collaborative robots (i.e. cobots) are expected to cooperate in physical tasks with them17

(e.g. moving large objects [3]). Cooperation requires adaptation on both sides. Hence, cobots must be18

safe [4–6] and include force sensing capabilities to better adapt to persons’ feedback and constraints.19

Force sensing is particularly important in Physical Human-Robot Interaction (pHRI), where robots20

are expected to physically manipulate a person, e.g. rehabilitation [7], exoskeletons [8], or prosthesis [9].21

In these cases, dependability and safety become a major concern [10,11], specially when it is up to the22

robot to intentionally touch and/or manipulate people using grippers [12]. Some of these applications23

include assistive robotics [13], search and rescue missions [14] and healthcare applications [15] among24

others. These robots need to accommodate to humans’ constraints and needs via shared control. To25

achieve continuous, transparent adaptation, low level shared control must rely on blending the robot26

commands with human intention,Although accuracy in force estimation is not critical at low level, as27

no high precision is required and constant feedback and adaptation tend to correct minor errors, it is28
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Figure 1. The proposed approach estimates the forces applied by a human in a frontal plane when
their forearm is grasped by a robot (a) with an underactuated gripper using only the proprioceptive
information from servos and passive joint angles (b).

at least necessary to assess human force direction and magnitude, so the robot can comply with the29

person’s input.30

There are several methods for estimation of human/robot interaction forces. The most common31

ones are industrial force/torque sensors, current-controlled cobots and sensitive manipulators with32

joint torque sensors. Industrial sensors are accurate and provide Cartesian external forces but they are33

usually bulky, heavy and expensive. Manipulators with joint torque sensing can be implemented using34

elastic joints, which can be easily developed using the position error and the arm inverse Jacobian [16],35

but provide poor performance. Motor current-based force estimation depends on an accurate model36

of the arm dynamics with frictions [17]. Some other robots include rigid joints with torque sensors37

integrated with the controller, used to provide impedance control. Those robots are expensive and38

require complex control [18], and they are used mostly for research purposes. Some experimental force39

sensors for robot arms are based on lightweight pressure sensors such as piezoresistive sensors [19],40

MEMS barometric sensors [20], or optical [21], which are still under development.41

Alternatively, force estimation could be performed on end effectors instead of on the robot arm42

Corrent choice of the end-effector is important for safe huaman manipulation. Although there are43

many different grippers [22], safe, reliable and autonomous grippers, sensitive enough to manipulate44

human limbs are still under research. Soft-grippers are receiving a growing interest in this field [23],45

but precise manipulation often requires an adaptive but more controllable solution. Gripper based46

proprioceptive sensing has been already used in pHRI and can provide a more controllable solution. In47

[24], variations on the forearm perimeter have been used to estimate hand postures. [25] proposes to48

estimate forces using uniquely proprioceptive sensors in an arm to estimate the position of a surgical49

instrument carried by an underactuated arm (continuous flexible or made of rigid serial links) based50

on the actual positions of the intermediate stages, and also the interaction forces.51

The authors have already published works in the field of force sensing in pHRI [26] and intelligent52

tactile perception in robotics [27]. Specifically, in [28] they proposed to use additional joint angle53

sensors to obtain shape estimation on grasped objects for limb manipulation planning. In this work54

we propose to extend the capacities of the gripper in [28] to also assess forces exerted by the human55

forearm with no further modifications, i.e. additional sensors. Rather than building an analytic model,56

given the complexity of these problems, many of these methods rely on machine learning techniques.57

For example, in [29], interaction forces between a human and a cobot were measured using an external58

industrial 6-axis force sensor. In [30], the interaction force is predicted by using flexible joints with59

integrated force sensors, performing an estimation of the arm global friction, but the approach requires60

additional functional and fully calibrated force sensors in the gripper.61

In this work, we propose a regression model to detect interaction forces in a gripper with two62

underactuated fingers with two-phalanx using uniquely its own proprioceptive joint sensors, namely63

servo and one passive joint angle. Specifically, the gripper is expected to manipulate the forearm of a64
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person in a frontal plane. The gripper adapts to the forearm of the human by design, flexing fingers65

and shifting forces to keep the grip. As the person moves to either comply with the robot motion66

or resist, finger angles and applied torque keep adapting, implicitly providing information on the67

direction and magnitude of human forces on the grip, as illustrated in Figure 1. The ultimate goal of68

our proposal is to obtain information on human intention and interaction force in a continuous way so69

that the robot may adapt to human needs and constrains in a transparent way via shared control in70

applications involving pHRI. The main novelty of our proposal is that it relies on information that71

grippers can provide without any additional hardware. Hence, we avoid any extra weight, cost and/or72

complexity in the system. Due to the non rigid properties of the human forearm and the use of machine73

learning methods, proprioceptive sensor information (servo and passive articulation positions) is74

related to forces. Hence, we can train a model using data from tests with volunteers where forces75

are measured using independent sensors. Thus, inexpensive underactuated grippers with different76

number of fingers can be used to assess human force based human intention for efficient, low level77

shared control in assistive robotics.78

The paper is structured as follows. Section 2 presents the design of our gripper and its control79

system, also, its kinematic and dynamic analysis are presented. Section 4 presents the experimental80

setup of the system. Section 3 describes the tests done and the results obtained. Finally, these results81

are discussed in section 5, and conclusions and future work are provided in section 6.82

2. The Underactuated gripper83

This section presents our gripper design along with a kinematic and dynamic analysis. Besides,84

the experimental prototype and the sensing and control systems are described.85

2.1. Design86

The design proposed in this paper consists of using a gripper with two independent underactuated87

fingers, with two phalanxes and a single actuator each as shown in Figure 2. Actuators can be88

implemented using tendons or rigid linkages. The use of tendons (e.g. Yale OpenHand) as in [31] has89

been discarded for our application, due to the displacements of the internal contact surfaces of the90

fingers when pinching the human skin. Hence, our gripper relies on a transmission system based on91

rigid linkages, that also provides a more human-friendly contact.92

A special feature of this design is the addition of a joint angular sensor that provides information93

of the values of the passive joints. This allows us to evaluate how the grip adapts to a human’s94

upper-forearm. A prototype has been manufactured using FDM 3D-printers, and the CAD files have95

been made released openly in a public repository 1.96

2.2. Forward kinematics97

As the value of the joint positions in the adaptive fingers depends on the interaction forces with98

the environment, they provide information about the shape of the contact surfaces. The value of θ2 (θ2l99

and θ2r for left and right fingers, respectively) are obtained by miniature potentiometers that measure100

the relative angle between the two phalanxes. The values of θa are obtained from the smart-servo101

controllers. Knowing both values, the five-bar mechanism, with fixed-length links, can be solved using102

trigonometric methods, so the angle of the first phalanx θ1 can be computed.103

Solving the trigonometric equations and using the auxiliary angles α1 = θ1 + γ, α2 = π − ψ + θ2

and αa = π − θa − γ, the forward kinematics model is presented in equation (1).

θ1 = asin
(

d
f

sin (θa + γ)

)
+ asin

(
b
g

sin (ψ− θ2)

)
+ acos

(
f 2 + g2 − c2

f g

)
− γ (1)

1 /github.com/TaISLab/umahand
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Figure 2. Kinematic design of the gripper for pHRI showing the parameters and joint angles. For
clarity, every finger has been partially labeled.

where f and g are the non-adjacent vertex distances indicated in 2, computed as (2) and (3).

f =
√

d2 + e2 + d e cos (θa + γ) (2)

g =
√

a2 + b2 + a b cos (ψ− θ2) (3)

2.3. Dynamic model104

The general dynamic model for each of the rigid linkage-driven underactuated fingers, with
multiple DOFs is given by

M(θ) θ̈+ C(θ, θ̇) θ̇+ G(θ) + F(θ̇) = TT(θ) τa + JT
1 (θ) Fext1 + JT

2 (θ) Fext2 (4)

where θ = [θ1 θ2]
T is the 2× 1 joint vector for each finger composed by the values of joint 1 and 2.105

θ̈, θ̇ denote its acceleration and velocity vectors respectively. M(θ) represents the 2× 2 symmetric106

positive definite inertia matrix, C(θ, θ̇) the Coriolis and centripetal torques matrix, and G(θ) and F(θ̇)107

the 2× 1 gravity and friction vectors. τa is the scalar actuator torque, TT(θ) is the 2× 1 transposed108

transfer matrix that relates the velocities of the actuators to the joint velocities, JT
1 (θ) and JT

2 (θ) are109

the 2× 2 transposed Jacobian matrices of the contact points on phanlax 1 and 2 respectively, where110

the corresponding Cartesian forces Fext1 and Fext2 are considered. As all the motion axes are parallel,111

forces in other directions are rejected by the planar kinematic constraints. This way, Cartesian forces112

are be expressed as a 2× 1 vector of two coordinates along the finger plane.113

The actuator torque τa is provided by a servomotor that has his own dynamics (5) and follows a
proportional position control law with torque limitations, as in (6) which renders the finger compliant.

τa = τm − Jm θ̈a − Bm θ̇a (5)

| τm |= min{| (θclosed − θa)Kp | , τmax} (6)

Where the actual position actuator is θa, and Jm and Bm are the moment of inertia and frictions of the114

servomotor respectively, that have to be taken into account, as its gear box has four spur gears with115
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Figure 3. Representative schematic of the intelligent perception system. The regression model uses the
measurements from the proprioceptive sensors of the smart actuators and the underactuated joints
to estimate external forces. The dotted line represents the supervised learning process, which uses
ground truth forces measured with force sensors for training.

a 350 : 1 ratio. The motor torque τm is computed at the embedded controller based on the following116

fixed parameters: reference value for the closing position θclosed, proportional gain Kp, that defines the117

compliance, and maximum torque τmax that limits the grasping force.118

3. Force Estimation Method119

To overcome the difficulty of obtaining an analytic model, we propose to use regression methods.120

The proposed method adapts better to imperfections, sensor and mechanical errors and can be121

extensible to other similar grippers via training. An schematic of the method is presented in Figure 3,122

where the symbol (ˆ) represents measurements, and F̃ are the estimated external forces.123

The inputs of the smart actuators’ current-based controllers are the desired position (θd) and
maximum current (Imax). Current positions (θ), velocities (θ̇) and accelerations (θ̈) of the joints are
considered inputs of the estimator, along with the current (Î) and the PWM of the control signal (P̂).
The position is measured from the encoders of the smart actuators (θ̂a) and the sensors integrated in the
passive joints θ̂2. Velocities and accelerations are computed from the position with discrete derivatives
according to the sample time (∆T). P̂ and Î variables present low correlation in our actuators (Pearson
coefficient equal to 0.4379) due to dynamic behavior of the DC motors. Hence, they are kept as
input parameters in our model. All the signals are defined for the two-finger gripper as defined in
equations (7), where sub-index r and l refer to right and left actuator, respectively.

P̂ =

[
p̂r

p̂l

]
; Î =

[
îr
îl

]
; θ =


θar

θ2r
θal
θ2l

 ; θ̇ =
∆θ

∆T
; θ̈ =

∆θ̇

∆T
; F̂ =

[
f̂x

f̂y

]
; F̃ =

[
f̃x

f̃y

]
(7)

Thus, the goal is to find a non-linear function (L ). According to equation (8), this function estimates124

external forces from input parameters. We propose two regression methods to obtain L : i) Support125

Vector Regression (SVR) [32]; and ii) Random Forest Regression (RFR) [33].126

F̃ = L
(
P̂, Î, θ, θ̇, θ̈

)
(8)

SVR relies on fitting the error rate within a certain threshold rather than minimising it (Principle127

of Maximal Margin). The main advantages of SVR is that it is a non-parametric technique, i.e. it does128

not depend on distributions of the underlying dependent and independent variables. Additionally, it129

permits for construction of a non-linear model without changing the explanatory variables, helping in130

better interpretation of the resultant model. RFR is a type of additive model that makes predictions by131

combining decisions from a sequence of base models (ensemble learning), where each based classifier132

is a decision tree. Unlike linear models, RF are able to capture non-linear interaction between the133
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Table 1. Values of the parameters of the kinematic model of the underactuated gripper described in
Figure 2.

Parameter Value Parameter Value
a 40 mm e 27.8 mm
b 20 mm ψ 90◦

c 60 mm γ 56◦

d 25 mm w 10 mm

features and the target. Both methods are appropriate to work with non-linearity and outliers, so they134

are good candidates to solve our problem.135

4. Experimental setup136

By adding proprioceptive angular sensors, the angles θ2l and θ2r can be measured (we use l and137

r subscripts for left and right fingers). Thus, given the position information provided by the servos138

(θal and θar), the position of the remaining phalanxes (θ1l and θ1r) can be computed. As a result, the139

position of the gripped objects can be estimated using the θ2r and the shape of the grasped object can140

be inferred with the positions of the two fingers θl and θr.141

Two potentiometers (muRata SV01 10kΩ linear) have been used for the measurement of the distal142

joints. They have been added to the gripper as a DAQ with a 50Hz sample rate. The actuators are143

Dynamixel XL450-W250 servos featuring a 12-bits digital magnetic encoder (0.088◦ resolution), and144

an advanced position based-controller with torque limits to provide a sort con force control. This145

capability is essential to control the grasping force. Their internal position PID loops have been set to146

Proportional-only control to get compliance to the user interaction forces. The servos provide real-time147

feedback of the positions (θa), the electrical current (I), and the PWM output (P) of the controller.148

A microcontroller board (Arduino Mega 2560) has been used as gripper interface and DAQ, that149

periodically samples the analog values with 10-bits ADC (0.26◦ resolution), from the potentiometers,150

and queries the status of the servos at a rate of 10Hz. Using a serial port over USB communicates with151

the main computer to provide with the above information and receives simple Open/Close commands.152

The actual values of the parameters for the kinematics shown in Figure 2 can be found in Table 1.153

It has been designed to grasp an upper-forearm with a perimeter between 16.2 and 19.3 cm and a154

median of 17.7 cm, according to the anthropometrics from [34].155

The joints ranges present different mechanical limits. In particular 0 ≥ θ2 ≥ π/2. The position of156

the phalanxes depends on the balance between external forces F1, F2, the actuator torque θa and the157

extension springs (164 N/m) used to make the finger stable when no external forces are applied.158

In order to use machine learning techniques to estimate forces using the gripper, we need to159

capture all the problem instance parameters simultaneously. Also, we need a test environment that160

ensures repeatability. Hence, we have designed the structure in Figure 4 to obtain a ground truth for161

our regression methods. It can be observed that the gripper is physically attached to six load cells used162

to estimate Cartesian forces (Figure 4.a). Thus, when the gripper is closed around a moving forearm163

(Figure 4.b), we can record its force and all gripper parameters at the same rate of 20 Hz.164

Force sensors in our structure (see Figure 5a) have been calibrated using a dummy forearm-section165

and a force-meter to obtain ground-truth values. Different forces at different angles have been applied166

(Figure 5b), and recorded together its corresponding load-cells readings. Then, a matrix that relates the167

six readings from the load cells has been adjusted using a least squares method. The inverse of this168

matrix will then be used to provide output forces in kg f units from load-cell readings.169

After the calibration of the force sensor, a proportional control loop was programmed to maintain170

the person’s forearm as close as possible to the center of the gripper. We purposefully kept a low gain171

in our control loop in order to be more sensitive to external perturbations.172

Figure 6 shows forces measured in the X and Y axes by the load cells in the structure, the173

corresponding joint and servo positions and the current and PWM provided by the servo controller174
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Figure 4. Illustration of the data collection process with the experimental force sensing system (left
side visible only) to record ground-truth data and gripper readings to train the regression methods.
Note that only three load cells (left finger) are visible in this picture as the other three (right finger) are
hidden by the human forearm.
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Figure 5. Experimental setup (a) and calibration process for Y-axis (b) and X-axis (c) forces. A dummy
forearm-section is used to calibrate the force sensor used to get ground-truth values for the force
estimation methods.
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Figure 6. Excerpt from the data collected during experiments: Exerted forces (Fx, Fy) and the input
parameters position (θ2, θa), current (I), PWM (P), velocity (θ̇2, θ̇a), and acceleration (θ̈2, θ̈a), for left
finger. Right finger data are analogous.

for left gripper side. Signals may be positive or negative depending on the motor direction. In this175

example, the person first moves his forearm 3 times right and 3 times left (X axis) and then 2 times176

up and 2 times down (Y axis) in a sequence. Forces during the sequence can be clearly observed as177

peaks in the X axes in Figure 6. It can also be observed how θa and θ2 evolve with the forces. Similarly,178

current and PWM also present changes depending on forces. It can be observed that, in general, forces179

in the x-axis (e.g. seconds 1 to 3.5) are more correlated with the gripper parameter than forces in the180

y-axis (e.g. seconds 3.5 to 5). This was expected because the gripper is aligned in the Y axis in our tests,181

so the gripper fingers tend to slip when forearms move in vertical.182

As commented in section 2.3, dynamic parameters are required for force estimation. We can183

obtain angular velocities and acceleration extracting the first and second derivatives of on θa, θ2. To184

reduce noise in these new features, we use a moving average filter (size 3). Figure 6 shows these first185

and second derivatives, that present similar trends with exerted forces.186

It can be observed that obtained derivatives are centred in zero, whereas θa, θ2 are not. This187

happens because these angles depend on the gripped forearm shape. In order to avoid this shape188

dependence, we propose to use the initial forearm angles θa, θ2, obtained when the gripped initially189

closes, as an offset.190

5. Experimental Protocol and Results191

In order to test our system, five volunteers were asked to get their forearms gripped and pull in a192

frontal plane (X and Y movements) to obtain a training dataset. Each volunteer performs 2-minutes193
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circular motion (see figure 8.b) and 2-minutes cross motion (see figure 8.a). Forces and gripper194

parameters were captured in a continuous way with a common time reference at 20Hz. More than195

20000 samples were recorded in total.196

5.1. Data modelling197

Our problem requires multi-variable analysis as we need to estimate forces on the x and y axis.198

The first decision before modelling was consequently whether to work with forces independently or199

together. We have decided to model them independently; otherwise, any motion patterns in training200

sets presenting casual relationships in X and Y, e.g. users doing circular motion or favoring one side201

against the other, would be acquired in the model.202

As commented, we have tested RFR and SVR to create our model. Both techniques are appropriate203

to deal with non-linearity (e.g. Figure 6). RFR is particularly fit to cope with problems where parameters204

have different importance depending on the situation. For example, when forces in the x-axis are low,205

the current parameter (I) does not provide much information, whereas θ2 is still correlated with the206

force (Figure 6). However, SVR deals better than RFR with sparse data, which is present in boundaries207

-i.e. large forces- in our dataset.208

Matlab2 has been used to create RFR and SVR models. RFR has been created using the209

TreeBagger function. The best hyperparameter set for our data was: NumTrees = 40, MinLeafSize=5.210

SVR was created with the f itrsvm function. Kernel radial with standard parameters outperforms211

linear and polynomial kernel for our data. Automatic parameter optimization has been used212

(OptimizeHyperparameters) to select the best values for BoxConstraint, KernelScale and Epsilon213

parameters.214

5.2. Performance evaluation and discussion215

In this section, we analyze force estimation results in the frontal plane (X and Y), both for RFR216

and SVR. To do so, we acquired information from 5 volunteers using the described system. Each217

volunteer performed two tests: i) exerting forces in a cross pattern (only X or Y direction at a given218

time), and ii) exerting forces in a circular pattern (forces both in X and Y at all times), as shown in219

Figure 8. Volunteers were trained to use constrained forces, although no mechanism was applied to220

keep them in a constrained interval Ten tests were recorded per volunteer in a total testing time of 2221

minutes after training. Afterwards, a k-fold cross-validation technique per volunteer (k = 5) was used222

to evaluate the accuracy of the models. Finally, the Mean Absolute Error (MAE) was calculated for all223

tests of each regression model in X and Y.224

Figure 7 shows the resulting Force X and Force Y estimates versus the measured force values for225

all tests using both methods (SVR and RFR) in terms of MAE. RFR outperforms SVR slightly for our226

dataset. It can be observed in the middle range both models behave similarly but in all cases that RFR227

provides a better fit for low and high force values. This confirms the importance of input parameters228

depend on the force ranges. To understand this dependence, we can observe the importance of229

those input parameters using the OOBPermutedPredictionDeltaError variable from the TreeBagger230

RFR function in Matlab (Table 2). It can be observed that current I and the servo speed θ̇a are the most231

relevant parameters to estimate forces in the X axis. However, in order to estimate forces in the Y-Axis232

the second passive joint angle θ2 and its variation become more relevant. This is most likely due to233

slippage in fingers when users pull their forearm up and/or down, meaning that variations in the grip234

become more important than forces in the servoes in these cases.235

Figure 8 shows estimates versus real force values for a single test over time. It can be observed236

that the force module tends to be underestimated. This effect is higher in the Y-axis compared to237

the X-axis (see Figure 8.b), due to slippage in the grip. It can be observed that the motion pattern is238

2 Version used: R2019a by The MathWorks, Inc.
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(c) SVR. MAE: 0.2009.
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(d) SVR. MAE: 0.1905.

Figure 7. X (left) and Y (right) real cartesian forces versus estimated forces using RFR (top) and SVR
(bottom) methods.

Table 2. Parameter Importance in RFR. Best parameters are outlined.

θ2 θa I P θ̇2 θ̇a θ̈2 θ̈a
Force X 1.0921 0.9185 1.3562 0.9050 0.8265 1.3502 0.7936 0.8949
Force Y 1.6341 0.7029 0.7296 0.9385 1.5958 0.8571 0.7358 0.7156

correctly estimated. Hence, user’s intention can be estimated from these forces estimation to be used239

in a shared control approach, i.e. to adapt emergent motion patterns to the user’s preferred direction.240

Typically, users’ intention in shared control in pHRI have been obtained in different ways. In [35] intent241

is defined in a binary way (e.g., motion or not, left or right, up or down, etc.). Also, it is defined within242

a set of discrete intents (e.g. predefined poses) or using continuous variables (e.g steering angles). Our243

approach provides Cartesian X and Y forces. These forces can be transformed into polar coordinates244

- error module (ρε) and angle (θε) to calculate the classification accuracy and estimation error in all245

three typical user intent estimations: binary intent (left or right, i.e 180 degrees clustering), discrete246

intents (left, right, up and down, i.e 90 degrees clustering) and continuous intent (module and angle).247

Table 3 shows the results. It can be observed that the classification accuracy remains high in binary248

and discrete cases (above 90%), with values similar to the ones presented in [36]. On the other hand,249

continuous values provide a granularity below 20 degrees on average in direction, so applications that250

need to know the user’s intention to collaborate with them in tasks with some degree of freedom -e.g.251

repositioning a limb vs (precise) assistive surgery- can rely on the proposed approach.252

Table 3. User intent estimation depending on the desired shared-control output

Intent Classification accuracy/Estimation Error
Binary 99,08% (Right) 98.78%(Left)

Discrete 96.34%(Right) 97.69%(Up) 94.03%(Left) 95.87%(Down)
Continuous 19.2 degrees (θε) 0.22 kgf(ρε)
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Figure 8. Estimated vs measured forces for two types of interaction experiments. a) Vertical and
horizontal forces durin 4 s. b) circular forces trying to describe a circle for 2.8 s.

6. Conclusions253

In this work, we have presented a method to estimate interaction forces with an underactuated254

gripper grasping a human forearm. These forces are related to human intention and, hence, critical for255

pHRI. The intention is typically used in shared control approaches to ensure that human constraints,256

goals, and comfort are taken into account while their forearms are being manipulated.257

We use only the gripper proprioceptive sensors to estimate the forces. Specifically, we work with a258

gripper with two underactuated fingers to achieve an adaptive, robust, and precise grasping of human259

limbs operating in a closed control loop. Its proprioceptive sensors provide information about the260

servo and passive joint positions -using uniquely two inexpensive potentiometers-, plus the motor261

PWM and current. The analytical model of the gripper may already produce limited information about262

human forces in the gripper, but the model is only valid for certain conditions and it does not account263

for limb slippage nor for artifacts. Instead, we propose to use Machine Learning to estimate human264

forces.265

We have designed a platform to capture the required learning dataset that includes a fixated266

gripper and a force-measurement structure to get training data. When volunteers are moving their267

gripped forearms, we gather all the gripper parameter values as well as the load cells readings. We268

tested SVR and RFR to predict forces using the acquired dataset. RFR provides slightly better results269

because it adapts better to the nature of our data: depending on the force range, some input parameters270

provide more information than others. Specifically, we observed that force in X is better estimated using271

I and θ̇a and force in Y is better estimated using θ2 and θ̇2. After training, the method is computationally272

cheap and resulting trees can be run in parallel.273

The proposed method does not require any additional sensor except the gripper proprioceptive274

ones. Additionally, proposed proprioceptive sensors are cheap, robust, and do not require275

calibration for each different gripped object. The gripper has two fingers in the same plane, so276

only two-dimensional forces (in a frontal plane) are considered because the forces in other directions277

are rejected by the kinematic constraints of the fingers.278

Results prove that the proposed methodology provides satisfactory results in all our tests with279

different people and changing forces. Future work will focus on developing a gripper with a higher280

number of non-parallel fingers to consider forces in the full Cartesian space. Also, we will work281

on implementing shared control based on estimated forces to prove that task efficiency and human282

comfort improve using the proposed method to estimate user’s intentio.283
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