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Abstract—This paper proposes a hybrid learning and optimiza-
tion framework for mobile manipulators for complex and phys-
ically interactive tasks. The framework exploits an admittance-
type physical interface to obtain intuitive and simplified human
demonstrations and Gaussian Mixture Model (GMM)/Gaussian
Mixture Regression (GMR) to encode and generate the learned
task requirements in terms of position, velocity, and force
profiles. Next, using the desired trajectories and force profiles
generated by GMM/GMR, the impedance parameters of a
Cartesian impedance controller are optimized online through a
Quadratic Program augmented with an energy tank to ensure the
passivity of the controlled system. Two experiments are conducted
to validate the framework, comparing our method with two
approaches with constant stiffness (high and low). The results
showed that the proposed method outperforms the other two
cases in terms of trajectory tracking and generated interaction
forces, even in the presence of disturbances such as unexpected
end-effector collisions.

Index Terms—Compliance and Impedance Control, Mobile
Manipulation, Imitation Learning.

I. INTRODUCTION

DUE to the manufacturing shift from mass to customized
production processes and the trend of an aging popula-

tion in recent years, more flexibility and safety are required
for robots in industrial and logistic scenarios. Collaborative
Mobile Manipulators (CMM), which integrate a collaborative
manipulator on a mobile platform, are designed with these
objectives, combining the precision and manipulation capa-
bilities of a robotic arm and the locomotion potential of the
mobile platforms [1]. Because of these advantages, CMMs
have demonstrated high suitability to different tasks, not only
in industrial manufacturing and warehouse automation but also
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Fig. 1. Left side: teaching a complex physically interactive task. Right side:
Execution of the learned task adapting the Cartesian impedance.

in service and domestic applications [1], [2]. Nevertheless,
integrating different components makes the control and trajec-
tory planning harder for CMM. Aiming at overcoming the
synchronization issues of decoupled strategies, whole-body
controllers have been presented. In particular, whole-body
torque-based strategies could regulate not only the interaction
forces with the environment but also the motion distribution
at the joint level, generating different motion patterns [3], [4].

In addition, when facing unstructured environments, where
interactions may change unexpectedly, collaborative robots
(cobots) are expected to adapt their performance online to
unforeseen situations. While dealing with physically inter-
active tasks (see Fig. 1), hybrid position-force approaches
are favorable w.r.t. pure force control for safety reasons.
Nevertheless, such schemes presented an unstable behavior
during the contact phase [5]; hence it appears convenient
to render virtual forces through an indirect method such as
impedance control.

To model the system response to interactions with the en-
vironment, impedance controllers require the tuning of a high
number of design parameters (generally stiffness, damping
and inertia). Usually, high impedance is required in case of
precise motions, whereas lower impedance is favorable in case
of interactions with the environment. However, how to opti-
mally tune impedance parameters, namely variable impedance
control (VIC), is still an open issue. For instance, in [6] an
impedance model based on a mass-damper system is used to
express the desired dynamics of the error between the guessed
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position of the environment and the actual desired position,
which is the one allowing force tracking. In particular, based
on the force error the damping is tuned online and the desired
position obtained from the resulting dynamic model is sent to
a position-controlled robot. Although this method can achieve
force tracking on different surfaces, the desired trajectory
computed is altered based on the force error (e.g., when the
surface contact is lost), which may result in an unsafe behavior
of the robot. Differently, authors in [5], [7] propose different
strategies to self-tune the impedance parameters according to
the position error. While a high tracking error increases the
stiffness, the interaction force is exploited to detect unplanned
contacts and recover a compliant behavior. In [5], moreover,
the authors try to further minimize the interaction with the
environment. Nevertheless, sometimes high interaction forces
are a task requirement and hence becoming compliant is not a
suitable strategy. Additionally, human-in-the-loop approaches
allow for online tuning of the robot behavior (varying damping
and inertia) transferring the human skills for specific collab-
orative tasks as a trade-off between precision and speed of
execution [8]. Other methods exploit EMG sensors to estimate
joint stiffness and generate reference trajectories at the same
time [9], [10]. Although these human impedance-transfer
approaches for fixed base robotic arms can benefit from real-
time adaptation to the changing environment, especially in
teleoperation, EMG sensors and motion capture systems are
required, making them unsuitable for industrial and domestic
applications.

Furthermore, to generate autonomous tasks for CMM, op-
timal impedance profiles are not sufficient, also reference tra-
jectories should be defined. Imitation Learning (IL) paradigm
has proven to be an efficient way to obtain desired motion
given a predefined set of trajectories demonstrated by a teacher
[11]. The IL paradigm includes different algorithms to encode
the taught demonstrations, such as Dynamical Movement
Primitives (DMPs) [12] and Gaussian Mixture Model (GMM)
/ Gaussian Mixture Regression (GMR) [11], among the most
used. In the context of cobots, one IL methodology, i.e. kines-
thetic teaching [11], has gained increasing popularity since it
does not require any retargeting from teacher to the robot.
Its implementation usually requires gravity compensation or
admittance control through force sensing (force-torque (F/T)
sensors at the end-effector or joint torque sensors).

To the best of the authors knowledge, currently there exist
few intuitive interfaces that fully exploit the potential of
CMMs in kinesthetic teaching. In the context of fixed-base
manipulators, several works faced the problem of simultaneous
learning of trajectories and force profiles through impedance
models [13] using GMM/GMR. In [14], to generate safe
robot behavior, the variable stiffness is tuned according the
inverse of the position covariance of the GMM. In [15], two
different semi-positive definite (SPD) stiffness representations
are investigated, while stiffness profiles are obtained with a
least-squares estimator using a linear interaction model, based
on position/force demonstrations. A similar approach based
on regularized regression and force sensing was used by
the authors in [16], where the GMM maps the relationship
between external force (input) and stiffness (output). Then,

the stiffness is generated online by GMR based on current
external force during teleoperation, where high external force
will result in high stiffness. Nonetheless, the high stiffness
of robots may hurt humans if the large force is generated
by human disturbances. A different methodology, based on
reinforcement learning (RL), models the robot policy by
DMP that includes trajectory and impedance parameters. The
policy parameters are then offline optimized using a variant of
policy improvement with path integrals [17]. However, this RL
method and the iteration optimization method in [5] requires
several simulated executions of the desired task and they
cannot deal with unforeseen disturbances online. In addition,
most of the methods in the literature do not directly ensure
the stability of the VIC, whose property is fundamental for a
safe Human-Robot Collaboration (HRC) [13].

To address these issues, we propose a method to learn
loco-manipulation tasks exploiting the paradigm of VIC (see
Fig. 1). Our goal is to teach our MObile Collaborative
robotic Assistant (MOCA) from human physical demonstra-
tions through IL and generate robust and safe autonomous
behaviors by regulating the interaction forces between the
robot and the unstructured environment in quasi-static con-
ditions. Thanks to an admittance-type interface [18], complex
interactive tasks are intuitively demonstrated and then encoded
by a GMM that learns the task trajectory and interaction force
maps between the robot and the environment simultaneously.
The desired trajectory and force profile are generated using
GMR. Based on the learned force, the desired impedance
parameters are computed online as the result of a quadratic
program (QP), which ensures the lowest stiffness required
to achieve the task, subject to force and stiffness limits
imposed by safety requirements. Moreover, an energy tank-
based passivity constraint is added to ensure the controller’s
stability. The desired trajectory and generated stiffness are
finally sent to the MOCA weighted whole-body impedance
controller (see Fig. 2).

The method is evaluated with a table cleaning task, where
two different experiments are conducted. First of all, the task
is taught in nominal conditions. Then, MOCA replicates the
learned task in the same conditions and in the presence of
external disturbances coming from the environment and from
unexpected physical interactions with the human. The results
show that the impedance parameters’ tuning yields similar
(good) performances in all conditions, allowing at the same
time trajectory and force tracking and robust and compliant
interactions compared to constant stiffness solutions.

II. PRELIMINARIES

A. MOCA Platform and Whole-Body Impedance Control

MOCA is a research robotic platform designed for HRC,
with loco-manipulation capabilities that make it potentially
suitable for logistics [3] and flexible manufacturing [19]. It is
composed of the lightweight torque-controlled 7-DoFs Franka
Emika Panda robotic arm, mounted on top of the velocity-
controlled 3-DoFs Robotnik SUMMIT-XL STEEL mobile
platform.
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Fig. 2. The proposed framework scheme. Humans can teach MOCA the interactive tasks directly through an admittance-type physical interface, and the
desired trajectories and interaction force are replicated with GMM/GMR. Then, the desired force is sent to a QP-based algorithm to optimize online stiffness.
A tank energy constraint ensures the passivity of the system. Finally, the desired trajectory and stiffness are sent to MOCA’s whole-body impedance controller.

The whole-body dynamic model [4], [20] can be formulated
as:(
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where Mv ∈ Rnb×nb and Dv ∈ Rnb×nb are the virtual
inertia and virtual damping of the mobile platform, q̇m ∈ Rnb

is its input velocity, τ ext
m ∈ Rnb and τ vir

m ∈ Rnb are the
related external and the virtual torque. With respect to the
arm, qa, q̇a, and q̈a ∈ Rna are the joint angles, velocities and
accelerations vectors, Ma ∈ Rna×na is the symmetric and
positive definite inertia matrix of the arm, Ca ∈ Rna is the
Coriolis and centrifugal force vector, ga ∈ Rna is the gravity,
τ a ∈ Rna , and τ ext

a ∈ Rna are the commanded torque vector
and external torque vector, respectively. This model can be
summarized by

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext. (2)

where M(q) ∈ Rn×n (n = na+nb) is the symmetric positive
definite joint-space inertia matrix, C(q, q̇) ∈ Rn×n is the
joint-space Coriolis/centrifugal matrix, and g(q) ∈ Rn the
joint-space gravity. Finally, τ ∈ Rn and τ ext ∈ Rn represent
joint-space input and external torque.

The MOCA Cartesian impedance controller is formulated as
a prioritized weighted inverse dynamics algorithm and can be
obtained by solving the problem of finding the torque vector τ
closest to some desired τ0 that realizes the operational forces
F ∈ Rm (m ≤ 6), according to the norm induced by the
positive definite weighting matrix W ∈ Rn×n,

min
τ∈Rn

1

2
∥τ − τ0∥2W s.t. F = J̄

T
τ (3)

where J̄ = M−1JTΛ is the dynamically consistent pseudo-
inverse of the Jacobian matrix J(q), and the constraint F =

J̄
T
τ = ΛJM−1τ is the general relationship between the

generalized joint torques and the operational forces, and Λ =

(JM−1JT )
−1 ∈ Rm×m is the Cartesian inertia. The closed-

form solution results in:

τ =W−1M−1JTΛWΛ−1F+

+ (I −W−1M−1JTΛWJM−1)τ 0,
(4)

where ΛW = (JM−1W−1M−1JT )−1 is the weighted
Cartesian inertia, analogous to the Cartesian inertia Λ. The
weighting matrix W is generally defined as W (q) =
HTM−1(q)H , where H ∈ Rn×n is the tunable positive
definite weight matrix of the controller, that is used to generate
different motion modes [3].

Finally, F is computed to generate the desired closed-loop
behaviour, according to the Cartesian impedance law:

F = −Ddẋ−Kdx̃, (5)

where x̃ = xd−x ∈ R6 is the Cartesian pose error computed
with respect to the desired Cartesian equilibrium pose xd, and
Dd, Kd ∈ Rm×m are the desired Cartesian damping and
stiffness matrices, respectively. Moreover, τ0 could contain
different contributions, such as joint impedance, collision and
self-collision avoidance, joint limits avoidance, etc.

B. GMM & GMR

The desired trajectories and force profiles are generated us-
ing GMM and GMR. This choice is due to the low number of
hyperparameters that need to be tuned (i.e. only K, the number
of Gaussians). The parameters of GMM can be estimated
by Expectation-Maximization (EM) algorithm [21] with an
offline training process that makes use of the demonstrations.
To make the representation easier to understand, we give the
following definition: ηI and ηO respectively denote the input
and output variables on which the training is carried out,
where the superscripts I and O stand for their dimensions,
respectively. Given a input variable ηI , the best estimation
of output η̂O is the mean µ̂ of the conditional probability
distribution η̂O|ηI ∼ N (µ̂, Σ̂), which is computed by GMR
[11].

III. METHODOLOGY

A. Desired Trajectory and Interaction Force Hybrid Learning
Exploiting an admittance-type physical interface.

Aiming at demonstrating desired end-effector trajectories
and interaction wrenches to MOCA, we integrated kinesthetic
teaching with an admittance-type physical interface. The in-
terface is depicted in Fig. 3. It consists of i) an Arduino Nano
microcontroller connected to a 4-buttons panel that allows the
user to configure different functionalities and communicate
with the robot through the Robot Operating System (ROS)
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middleware suite, ii) a F/T sensor to measure the user interac-
tion wrenches with a physical part that the human can easily
grasp and iii) an end-effector tool. A detailed explanation
of the hardware and design of an admittance-type physical
interface can be found in [18].

The measured human wrenches λ̂h ∈ Rm, are used to
change the input Cartesian equilibrium pose in (5) as input
of an admittance controller which implements the following
desired dynamics:

Madmẍd +Dadmẋd = λ̂h, (6)

where Madm,Dadm ∈ Rm×m are respectively the admittance
mass and damping. This way, MOCA can move in space in the
same direction of the applied wrench. During the demonstra-
tion, the aforementioned buttons enable the human teacher to
control some functionalities of the admittance mapping in (6)
and of the whole-body controller presented in section II-A. In
particular, the human has control over the loco-manipulation
behavior of the robot (through selection of τ0 and H) and over
the desired admittance (Madm and Dadm). In addition, the
human can also enable and disable rotations and translations
of the end-effector.

The additional features introduced by an admittance-type
physical interface allow to exploit the full potential of a mobile
base robot and ease the demonstration process, considering
the human preference in different parts of the demonstrated
behavior. Thanks to selecting the loco-manipulation mode, the
human teacher can move the robot in a theoretically infinite
workspace during the demonstration and keep the mobile
base still when an interaction of the end-effector with the
environment is planned. Indeed, since the mobile base move-
ments, controlled at lower frequency w.r.t. the arm, perturb
the end-effector motion, demonstrating a desired interaction
with the environment can result challenging. Then, the human
teacher can tune the system’s responsiveness to the interaction
by selecting the admittance according to his/her experience,
preference, and specific requirements of the task: high admit-
tance for long unconstrained motion and low admittance for
short and precise interactions with the environment. Finally,
selecting only a subset of the task space axes could help
execute the task and speed up the learning procedure.

Desired Cartesian equilibrium pose xd and twist ẋd are
obtained as the solution of (6). Since the robotic arm used is
torque controlled, the interaction wrenches of the robot end-
effector with the environment F̂

ext
can be estimated through

the joint torque measurements of the arm. Hence, during the
demonstration, the human teacher can guide the robot through
the admittance-type physical interface while the robot arm
estimates its interaction with the environment. Then, a GMM
is trained from the data obtained from the demonstrations,
which input variable is time ηI = t and output variables

are ηO =
[
xT
d ẋT

d F̂
extT

]T
. Finally, the desired trajectory

and force can be generated by GMR.

B. QP-Based Stiffness Online Optimization
The outputs of the GMR are fed to a QP that allows to online

modulate the stiffness of the Cartesian whole-body impedance

controller presented in section II-A. The QP is formulated as
follows:

min
Kd

i ∈Rm×m

i∈{1,...,N}

1

2

N∑
i=1

(
∥F ext

i − F d
i ∥2Q + ∥Kd

i −Kmin∥2R
)

s.t. Kmin ≤ Kd
i ≤ Kmax i ∈ {1, . . . , N} (7)

−Fmax ≤ F ext
i ≤ Fmax i ∈ {1, . . . , N}

where i is the time step, N is the length of the time window,
Q and R ∈ Rm×m are diagonal positive definite weighting
matrices, Kd

i ∈ Rm×m is the desired stiffness of the Cartesian
whole body impedance controller at time step i, Kmin and
Kmax ∈ Rm×m are respectively minimum and maximum
allowed stiffness, F ext

i ∈ Rm is the wrench of the impedance
interaction model at time step i, that can be modeled with
impedance-like laws, F d

i ∈ Rm is the learned desired inter-
action wrench at time step i (i.e., output of the GMR) and
Fmax ∈ Rm is the maximum wrench that the robot can exert.
The constraint inequality between vectors is element-wise. The
optimization problem formulated above trades off the tracking
of the desired wrench with the requirement of keeping a small
stiffness.

The desired impedance interaction model can be expressed
in different possible ways. To render a desired mass-spring-
damper system, F ext is expressed as:

F ext = Λd ¨̃x+Dd ˙̃x+Kdx̃, (8)

where Λd ∈ Rm×m is the desired inertia matrix. However, the
interaction wrench must be measured precisely to render the
desired inertia matrix, which is referred to as inertia shaping
(e.g., using an F/T sensor). Unfortunately, a precise measure
is often not available, and the following interaction model is
rendered [22]:

F ext = Λ(x)¨̃x+
(
µ(x, ẋ) +Dd

)
˙̃x+Kdx̃, (9)

where no inertia shaping is performed, since the actual Carte-
sian inertia of the manipulator Λ(x) is used. Note that, in
order to keep the physical coherence of the interaction model,
the Coriolis and centrifugal terms µ(x, ẋ) must be added to
the desired damping since those arise from a configuration
dependent inertia [8], [22]. In practice, since also the acceler-
ation signal is often noisy, the following simplified model is
used:

F ext =
(
µ(x, ẋ) +Dd

)
˙̃x+Kdx̃. (10)

C. Tank Energy Based Passivity Constraint

The QP formulated in section III-B computes a Cartesian
stiffness at each time step that is sent to the Cartesian
impedance whole-body controller presented in section II-A.
It is well known that VIC might violate the passivity of the
system [23]; thus, the stability of the controlled system is
not guaranteed. In order to ensure system stability, the QP
formulation previously presented can be augmented through a
passivity constraint for the power port ẋF ext. The interaction
model of the variable Cartesian impedance can be written as
a port-Hamiltonian system and augmented through an energy
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tank [23]. The scalar differential equation that describes the
tank dynamics is:

ẋt =
σ

xt
˙̃xTDd ˙̃x− wT

xt

˙̃x, (11)

where xt ∈ R is the state of the tank that stores energy
T (xt) = 1

2x2t , σ ∈ {0, 1} is used to enable and disable the
dissipated energy storage in case a maximum limit is reached,
and w is the extra input of the port-Hamiltonian dynamics
which can be written as:

w(t) =

{
−Kv(t)x̃ if T (xt) > ε

0 otherwise,
(12)

where Kv(t) is the variable part of the stiffness so that
Kd(t) = Kmin +Kv(t) and ε > 0 is the minimum energy
that the tank is allowed to store. The tank energy is initialized
so that T (xt(0)) > ε. The constraint used to augment the
QP is derived by integrating the energy tank over time and
enforcing it to be higher than its minimum ε:

T (xt(t)) = T (xt(t− 1)) + Ṫ (xt(t))∆t > ε, (13)

where ∆t is the time step and

Ṫ (xt) = xtẋt = σ ˙̃xTDd ˙̃x−wT ˙̃x (14)

=

{
σ ˙̃xTDd ˙̃x+ x̃TKv ˙̃x if T (xt) > ε

σ ˙̃xTDd ˙̃x otherwise.
(15)

Note from (15) that the constraint can be expressed as a linear
function of the QP optimization variable only when T > ε.
Instead, when T ≤ ε the stiffness is constrained to take on its
minimum value (Kd = Kmin).

D. Technical Details

While in the previous subsection, the method has been
explained with generality, some simplifying hypotheses have
been assumed in the implemented method. First of all, in the
QP, the interaction model in (10) is used, where Kd,Dd are
assumed diagonal and ẋd is assumed equal to zero to comply
with the whole-body controller formulation. Moreover, only
the translational part of the interaction model is considered
in the optimization, while the rotational part is kept constant
(m = 3). The value of Dd in the optimization at the next
control loop is computed through double diagonalization at
the previous optimization step Kd, with critical damping
factor [22], where the diagonal elements are:

dd(t) = 2 · 0.707 ·
√
kd(t− 1), (16)

where dd(t) ∈ R3 is the vector of the diagonal compo-
nents of the desired Cartesian damping matrix at time t and
kd(t−1) ∈ R3 is the vector of the diagonal components of the
desired Cartesian stiffness matrix at time t− 1. The damping
is computed using the desired stiffness at the previous time
step to preserve the cost function’s quadratic nature in the QP
formulation. Finally, only a one-time step is considered in each
optimization (N = 1).

Start

Goal

MOCA

Teacher

Cleaning tool

Admittance-type

Interface

F/T

Sensor

EE Forces 

estimation

Fig. 3. Experimental setup. The teacher demonstrates the table cleaning task
to MOCA from Start to Goal. A cleaning tool is attached to the end-effector
of MOCA. The end-effector forces F̂

ext
are estimated thanks to the torque

sensors integrated in the robot joints. An additional F/T sensor is included in
the admittance-type interface to measure human interaction wrenches λ̂h and
decouple them from F̂

ext
.

The problem in (7) can be rewritten as:

min
kd∈R3

1

2

(
∥F ext − F d∥2Q + ∥diag{kd} −Kmin∥2R

)
s.t. kmin ≤ kd ≤ kmax (17)

−Fmax ≤ F ext ≤ Fmax

T (xt) ≥ ε

where diag{·} is the diagonal operator and the vector in-
equalities are elementwise. Note that both F ext and T (xt)
are linear functions of the optimization variable kd, thus the
last two inequality constraints can be easily expressed in
the generic form Ckd ≤ d. Moreover, if T (xt) < ε, then
kd = kmin. Note also that, since only the translational part
of the impedance model is considered, the GMM is trained to
encode only the linear part of velocities and forces.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experiments carried out in this work consist of human
demonstrations to train the GMM model and autonomous
repetition of a table cleaning task in two different conditions,
i.e. without and with external disturbances. For each condition,
three stiffness settings are tested: i) low constant stiffness (LS),
where kd = kmin, ii) high constant stiffness (HS), where
kd = kmax and iii) optimized stiffness (OS), where kd is
found online through our QP formulation in (17). The QP
solution was computed in C++ using ALGLIB QP-BLEIC
solver1 on Ubuntu 18.04. All experiments were run on a
computer with an Intel Core i7-4790S 3.2 GHz × 8-cores CPU
and 16 GB RAM. The same desired end-effector trajectory,
generated by GMR, is used for all the stiffness settings, while
the desired interaction force is employed only by OS.

The experimental setup for the human demonstrations is
shown in Fig. 3 along with the path followed by the hu-
man. The human teacher grasps an admittance-type physical
interface and can use the four buttons as described in section
III-A. The demonstrated trajectory starts from the start, which
coincides with the top-left part of the table from the human
viewpoint. Then, the human guides the robot end-effector to
clean the table, moving parallel to the shortest side of the

1www.alglib.net/optimization/quadraticprogramming.php

www.alglib.net/optimization/quadraticprogramming.php
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table, keeping the sponge in contact with the table’s surface.
When the bottom of the table is reached, the human guides
the robot in free motion to the top of the table, shifted to
the right w.r.t. the previous trajectory of an amount equal to
the cleaning tool width. This procedure is repeated six times
until the goal is reached. Three demonstrations are performed,
all from the same human teacher, where desired position and
interaction force of the end-effector with the environment are
recorded and are later used to train the GMM.

A constant Cartesian impedance for the whole-body con-
troller of MOCA is used during the demonstrations, with a
stiffness of Kd=diag{500, 500, 500, 50, 50, 50} and a damp-
ing computed through the double diagonalization formula.
Also, joint stiffness is added as secondary task to pre-
vent joint limits reaching and low manipulability configu-
rations, τ 0 = −D0q̇ − K0(q − q0), where K0,D0 ∈
Rn×n are joint stiffness and damping, while q0 ∈ Rn

is the desired joint configuration. The teacher can change
the admittance level to three discrete values correspond-
ing to low (Madm=diag{6, 6, 6}, Dadm=diag{40, 40, 40}),
medium (Madm=diag{4, 4, 4}, Dadm=diag{30, 30, 30}) and
high (Madm=diag{2, 2, 2}, Dadm=diag{20, 20, 20}) admit-
tance using a button of an admittance-type physical interface.
However, a constant high admittance is always chosen, in
order to make the human forces negligible w.r.t. the ones
coming from the environment. Moreover, the teacher can also
switch between locomotion (large mobile base movements)
and manipulation (mobile base fixed) mode, since a button
of an admittance-type physical interface allows to change
H , K0 and q0 simultaneously. Particularly, H and K0

can take on two discrete values (H=diag{10 · 1nb
, 2 · 1na

},
K0=diag{2 · 1n} for manipulation and H=diag{2 · 1nb

, 10 ·
1na

}, K0=diag{50 · 1n} for locomotion), while q0 is set to
the current arm configuration when a switch between the two
modes occurs.

The same experimental setup of the demonstrations is used
for the autonomous repetition of the task. Two conditions are
tested for each stiffness setting (LS, HS, and OS). In the
first one, i.e., the autonomous task repetition without external
disturbances, the robot repeats the demonstration in the same
environment displayed during the demonstration. While in
the second one, i.e., the autonomous task repetition with
external disturbances, the environment is perturbed during the
execution of the task. As previously mentioned, the cleaning
task consists of 6 cleaning movements that go from the top to
the bottom of the table, alternated with five free motions to
return to the top of the table before starting the next cleaning
movement. The following perturbations are applied during the
experiment (see also Fig. 4 (bottom)):

1) Single slow table lifting and lowering during the 1st

cleaning movement.
2) Single fast table lifting and lowering during the 2nd

cleaning movement.
3) Repeated low frequency and high amplitude table lifting

and lowering during the 3rd cleaning movement.
4) Repeated high frequency and low amplitude table lifting

and lowering during the 4th cleaning movement.
5) Collision with a human during the 5th cleaning motion.

6) Collision with a human during the last free motion.
The values of the parameters used during the au-

tonomous repetition experiments are kmin=[200, 200, 200],
kmax=[1000, 1000, 1000], Fmax=[60, 60, 60], ε=0.4, xt(0)=1,
Q=diag{3200, 3200, 3200} and R=diag{1, 1, 1}. The mini-
mum stiffness is chosen in order to have high compliance but
ensuring an acceptable position tracking performance, while
the maximum stiffness is selected in order to track the desired
motion with high accuracy while ensuring a stable behavior.
The maximum force corresponds to the maximum payload of
the robot, and the initial energy of the tank is slightly higher
than the energy threshold (ε). Finally, Q and R are chosen
experimentally to give higher priority to the force tracking.

B. Experimental Results
The results of the autonomous task repetition without ex-

ternal disturbances for LS, HS, and OS are shown in Fig. 5.
For all the experiments, force tracking and position tracking
performance are reported, while the stiffness values and energy
in the tank are shown only for OS. Although LS allows a
compliant behavior, it is not able to track the desired force
along z, which is necessary for the cleaning performance
(Fig. 5(b)). Conversely, for HS (Fig. 5(c)) a too large force is
applied along z. This results in the stick and slip phenomenon,
as can be viewed from the measured force and position trend
along the x axis. On the other hand, OS (Fig. 5(a)) generates
the right amount of compliance needed to track the desired
force during the interaction with the table while keeping low
stiffness in free motion when there are no interactions. The
two sources of energy variations in the tank are the dissipated
energy and the exchanged energy due to the variable stiffness
(see (15)). The energy in the tank has an increasing trend, and
it never falls below the threshold ε, meaning that the passivity
of the system is preserved, although sometimes energy drops
due to stiffness variations.

The results of the autonomous task repetition with external
disturbances for LS, HS, and OS are shown in Fig. 6. In
Fig. 6(b), the results of the autonomous task repetition with
external disturbances for LS are shown. Although the robot is
always compliant to environment uncertainties introduced by
external disturbances, it cannot perform the task properly since
insufficient force is exerted on the table. On the contrary, for
HS (Fig. 6(c1)), as soon as the table is lifted, the interaction
force exceeds the robot payload limit. The same situation
occurs when a human collides along x as it can be viewed in
Fig. 6(c2) on the right. Finally, the results for OS are reported
in Fig. 6(a). For all the types of disturbances applied along z,
the robot can optimize the stiffness to track the desired force.
The high-frequency disturbance makes the force tracking more
challenging, but the performance is still acceptable. Then, the
stiffness is kept low along x, resulting in a compliant behavior
when the human collides with the robot along that direction
while interacting with the table and during free motion. In
addition, the energy in the tank never falls below the threshold,
and it has an overall increasing trend. At the same time, it is
evident how the external disturbances affected the additional
energy injected (e.g., during table lifting) and extracted (e.g.,
during table lowering) from the tank.
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Fig. 4. Snapshots of the experiments. (top) Kinesthetic teaching of MOCA using an admittance-type physical interface. (middle) Experiment 1: autonomous
task execution in nominal conditions. (bottom) Experiment 2: autonomous task execution with random disturbances. The desk’s height was changed in different
frequencies and scales in the first five photos. The human stopped MOCA’s end-effector during the cleaning and free motion phase in the last two photos,
respectively. A video of the experiments is available in the multimedia extension and at the link: https://youtu.be/Ini4twYy4Rk.

Fig. 5. Results of autonomous task execution experiments in nominal conditions. (a). OS settings, from top to bottom are desired interactive force F d and
estimated force F̂

ext
during experiments, desired position Xd and real position X , generated stiffness K, and tank energy T (xt). (b). LS settings,from top

to bottom are desired interactive force F d and estimated force F̂
ext

during experiments, desired position Xd and real position X . (c). HS settings, same
contents with (b).

V. DISCUSSION AND CONCLUSION

The results described in section IV-B show that overall OS
outperforms LS and HS. Although LS keeps high compliance
and robustness to external perturbations and uncertainties,
it cannot achieve satisfactory cleaning performance. Instead,
HS failed in performance, safety, and robustness since it
renders a rigid behavior at the end-effector, resulting in high
interaction forces with the environment since it rejects the
external disturbances during motion. On the other hand, OS is
capable of exerting the right amount of force for the cleaning
task and, at the same time keeping as much compliance as
possible when no interaction is required.

The framework developed in this paper allowed to easily
teach a mobile manipulator to perform an interactive task.
The target tasks consist of complex interaction with the
environment and unconstrained motions in a larger workspace
w.r.t. the reachable workspace of a fixed-base robotic arm.
Moreover, the robot can robustly apply the learned interaction
force while maintaining free-motion compliance. If, instead,

the kinesthetic demonstrations were used to learn only desired
end-effector desired position and velocity trajectories and a
constant stiffness was used as it is done for HS and LS, a trade-
off should have been found between ensuring compliance and
high task-related performance. Even if achieving an accept-
able trade-off was feasible, it would not have been possible
to obtain the robustness to external perturbations that our
framework accomplishes. In addition, our approach ensures
the passivity of the system through an energy tank-based
constraint and allows to include payload limits and stiffness
bounds as constraints in the optimization problem.

Future work will include the learning procedure of all the
relevant parameters of the Cartesian impedance whole-body
controller, such as the motion modes and secondary tasks
through an admittance-type physical interface. In this work,
the task considered allowed to choose a priori some suitable
controller parameters that would have ensured the successful
loco-manipulation behavior of the robotic platform during the
whole task execution, but in more complex environments,

https://youtu.be/Ini4twYy4Rk
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Fig. 6. Results of the autonomous task repetition with external disturbances. (a). OS (b). LS (c) HS. The plotted variables are the same of Fig. 5. Plot (c1)
shows only disturbance type 1) since the robot stopped due to violation of safety limits. Plot (c2) shows disturbances type 5) and 6), where the robot again
stops due to violation of safety limits. The characterizing parameters of the first four perturbations for OS and LS respectively are (A: Amplitude; V: velocity; f:
frequency): 1) A=(0.1246, 0.1230)m, V=(0.0417,0.0464)m/s; 2) A=(0.1163, 0.1443)m, V=(0.1256,0.1163)m/s; 3) A=(0.0758, 0.0986)m, f=(0.8645,0.6755)Hz;
and 4) A=(0.0435, 0.0428)m, f=(2.0024,2.2422)Hz.

this is not always the case. Furthermore, the self-tuning of
the weighting matrices of the QP formulation (Q and R)
represents another appealing future development.
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