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A B S T R A C T
Transporting large and heavy objects can benefit from Human-Robot Collaboration (HRC), increasing
the contribution of robots to our daily tasks and addressing challenges arising from labor shortages.
This strategy typically positions the human collaborator as the leader, with the robot assuming the
follower role. However, when transporting large objects, the operator’s situational awareness can be
compromised as the objects may occlude different parts of the environment, weakening the human
leader’s decision-making capacity and leading to failure due to collision. This paper proposes a
situational awareness framework for collaborative transportation to face this challenge. The framework
integrates a multi-modal haptic-based Obstacle Feedback Module with two units. The first unit
consists of a warning module that alerts the operator through a haptic belt with four vibrotactile devices
that provide feedback about the location and proximity of the obstacles. The second unit implements
virtual fixtures as hard constraints for mobility. The warning feedback and the virtual fixtures act online
based on the information given by two Lidars mounted on a mobile manipulator to detect the obstacles
in the surroundings. By enhancing the operator’s awareness of the environment, the proposed module
improves the safety of the human-robot team in collaborative transportation scenarios by preventing
collisions. Experiments with 16 non-expert subjects in four feedback modalities during four scenarios
report an objective evaluation thanks to quantitative metrics and subjective evaluations based on
user-level experiences. The results reveal the strengths and weaknesses of the implemented feedback
modalities while providing solid evidence of the increased situational awareness of the operator when
the two haptic units are employed.

1. Introduction
Collaborative robots have recently reached remarkable

advancements, enabling safe operation alongside humans
without physical barriers. These human-robot partnerships,
leveraging human cognitive skills in conjunction with the
precision and repeatability of robots, offer tremendous po-
tential as high-performance solutions across various sectors,
with significant implications for manufacturing, logistics,
and industrial settings [1].

Existing Human-Robot Collaboration (HRC) approaches
in the literature have mainly focused on understanding
human intentions and designing robotic systems to respond
accordingly to establish an intuitive collaboration similar to
a human-human partnership. Recent research studies have
shown that effective human-robot teams can provide real
practical solutions in diverse domains, including assem-
bly [2], surface treatment [3], and sawing [4].

However, the application of intuitive and bi-directional
communication must also be considered, as it increases the
human operator’s situational awareness about the current
state of the task and the environment to increase safety
and efficiency [5]. Various communication interfaces have
been explored depending on the specific work environments,
tasks, and information types. For instance, in [6, 7, 8],
augmented reality (AR) interfaces were employed to inform
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Fig. 1: We propose a novel multi-modal feedback module based
on vibrotactile feedback and virtual fixtures to augment the
operator’s awareness of the environment during collaborative
transportation.

the human operator about different phases of a collaborative
task. In another study [9], a graphical user interface (GUI)
was used to operate a configurable set of robotic arms,
providing the human operator with information about active
robots, selected control strategies, and options to reconfigure
the robots according to the task requirements. Similarly,
Merlo et al. [10] displayed a (GUI) on a screen to instruct
human users on their assigned roles during a collaborative

Sirintuna et al.: Preprint submitted to Elsevier Page 1 of 15



Enhancing Human-Robot Collaborative Transportation through Obstacle-Aware Feedback

assembly task. As an alternative to visual interfaces, verbal
feedback has been investigated to increase human situational
awareness during collaborative tasks [11].

A standard task in industrial settings involves transport-
ing bulky objects. This dyadic task usually demands high
physical effort and requires adaptability to the surroundings.
Collaborative mobile manipulators can work synergistically
with humans to conduct seamlessly such activities. Never-
theless, as mobility introduces safety considerations due to
collision2, the communication between robots and humans
assumes a pivotal role in enhancing situational awareness,
thus emphasizing its substantive significance. Despite this
necessity, the problem of situational awareness in dyadic
mobile collaborative tasks has not been faced systematically.
Considering the nature of the task, it is not feasible to employ
many of the interaction interfaces used in the literature,
including the examples above, to provide feedback to the
human operator. While the visual interfaces are impractical
due to the mobility of the task, the approaches that utilize
verbal feedback may not be suitable for noisy environments,
such as manufacturing sites.

In this paper, we propose a novel situational aware-
ness framework applied to a collaborative carrying task.
This framework incorporates a multi-modal haptic-based
Obstacle Feedback Module that combines a Vibrotactile
Warning Unit and a Virtual Fixture Unit to inform the
human operator about the obstacles in the environment (see
Fig. 1). The framework is not only capable of informing
the human operator about obstacles in the environment but
also restricting the underlying motion when necessary. In our
previous work [12], we introduced a promising solution for
co-carrying of bulky, deformable, and ungraspable objects
where the transportation task is purely led by the human.
That approach, however, focused on the human-robot inter-
action regarding co-transportation, assuming that no obsta-
cles were present in the environment. This assumption limits
the application potential of the solution and demotes safety
in real workplaces. In addition, as the experiments reveal
in [12], the human field of view can be limited when carrying
large objects, potentially jeopardizing safety and increasing
the probability of operational setbacks. To overcome these
limitations, this study presents the following contributions:

• Development of a multi-modal haptic-based situa-
tional awareness framework that augments the oper-
ators’ perception of the environment. This framework
is integrated into our human-robot co-transportation
system [12], that features a whole-body interaction
controller and planner for a mobile collaborative
robot. The goal is to use the robot’s onboard sensors to
scan the environment and to provide feedback to the

2Standard and autonomous collision avoidance algorithms can be
ineffective in such scenarios due to the complex nature of manufacturing
environments that are dynamically changing and hard to model/adapt.
Hence, humans must have the leading role and be able to dynamically adjust
the behavior of the dyadic system.

leader human (hence, not interfering with the leader-
follower dynamics), and to reduce the likelihood of
operational setbacks.

• Development of a Vibrotactile Warning Unit using
the ErgoTac-Belt [13]. This unit provides information
about the location and the distance of the nearby
obstacles. Hence, even if an operator cannot see an
obstacle (see Fig. 1), his/her spatial awareness is aug-
mented thanks to this unit and the robot’s onboard
sensory system.

• Design and implementation of a Virtual Fixture Unit
to constraint the motion of a mobile manipulator in
pHRI tasks using Lidars’ data. When the human-
robot dyad reaches an obstacle despite the vibrotac-
tile warning, this unit adjusts the robot’s end-effector
desired velocity in order to: i) prevent collisions with
obstacles, and ii) give the user a sense of resistance
when moving against them (kinesthetic feedback).

• Experimentation and validation of the proposed meth-
odology in an industrial-like co-transportation task.
The methodology has been evaluated under different
conditions with multiple subjects. In particular, 16
subjects carried out a task with a real robot in four
different environments with four different modalities:
no feedback, only vibrotactile warning, only virtual
fixtures, and multi-modal modality combining vibro-
tactile warning and virtual fixtures. Both quantitative
metrics and qualitative evaluations through usability
and workload questionnaires are presented in this
article. Results are reported, and an overall discus-
sion of the significant advances and limitations of
the proposed framework about the applicability in
actual manufacturing and logistics environments and
a comparison with the state-of-the-art are included.

Although human-robot co-transportation is a widely re-
searched topic in HRC literature, to the best of the authors’
knowledge, no prior study has focused on augmenting the
operator’s awareness to avoid collisions with the surround-
ings, especially for scenarios where the human leader’s
decision-making capability is compromised. The novelty
of our approach that faces this challenge lies in its multi-
model haptic feedback module. While the Virtual Fixture
Unit utilizes the 2D Lidar data of the mobile platform to
constrain the motion of the team led by the human oper-
ator, differing from the previous approaches that focus on
(semi)autonomous obstacle avoidance of mobile robots, the
vibrotactile devices are used for the first time to convey
information about the location and proximity of the obstacles
in the HRC literature.

The rest of the article is structured as follows: The
following section summarizes the most relevant state-of-the-
art works on the previously mentioned topics: Human-robot
collaborative transportation, Virtual fixtures, and Vibrotac-
tile devices. Section 3 presents the proposed framework.
Section 4 describes the experiments and how the overall
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evaluation of the framework is conducted. The results and a
discussion of the contributions, advantages, and limitations
in the context of the state-of-the-art are presented in Section
5. Finally, we conclude the study with possible future direc-
tions in Section 6.

2. Related Work
2.1. Human-Robot Collaborative Transportation

In the field of physical Human-Robot Interaction (pHRI),
the concept of transportation of jointly held objects is an
appealing use case as it leverages the complementary skills
offered by humans and robots. During this physically chal-
lenging task, the cognitive abilities of the human bring
the required adaptability to the team for the unstructured
environment of manufacturing sites, while the robot partner
assists the human by sharing the load.

In recent research, there has been a considerable focus
on examining how robots can proactively assist humans in
carrying objects instead of a mere follower role. In [14],
active assistance of the robot during collaborative manipula-
tion is achieved by employing a learning framework based on
Programming by Demonstration (PbD). During kinesthetic
teaching, the required position and the compliance con-
straints for the interaction controller are encoded. In a similar
work [15], the proposed PbD approach, which can adjust
the leader and follower behavior distribution, is validated
through a 1-D collaborative lifting task. Alternatively, Bussy
et al. proposed a proactive control scheme that exploits
anticipated human motion intention based on pre-defined
velocity thresholds [16, 17]. Building upon this framework,
researchers extended their controller by including visual
information in the co-transportation of a rigid table while
ensuring that a ball remains on top of it [18].

Although the previously mentioned proactive approaches
reduce the non-gravitational load which is required to guide
the robot during the intended trajectory, the human partners
still prefer to be the leader while collaborating [19]. In
addition, the complex nature of manufacturing environ-
ments makes it challenging to utilize pre-trained models
and heuristic-based proactive approaches, as these methods
struggle to adapt to dynamic changes that frequently occur
in such sites. For instance, an adaptive impedance controller
is introduced to enhance the transparency of the physical
collaboration in [20, 21]. Here, the damping parameter of
the controller is adjusted according to the human accelera-
tion/deceleration intention. In [22], a collaborative carrying
framework, where the robot follows the human-induced mo-
tion as a follower during the transportation of a rigid table,
is implemented by exploiting the compliance of the arms
of the humanoid robot. As an alternative, we proposed an
adaptive object deformation-agnostic framework for human-
robot collaborative transportation in our previous study [23].
The presented framework combines the human kinematic
information with the haptic information transferred through
the object to generate reactive whole-body movements on
the robot partner. Later, this framework is extended to
collaborate with multiple robot partners to handle bulky

objects which cannot be effectively manipulated by a single
robot partner [12].
2.2. Virtual Fixtures

In HRI applications that require high cognitive demand,
partial knowledge of the task is often utilized. This task
knowledge might involve a desired estimated motion, a
desired known analytical path, restricted regions presented
as point clouds, or a desired trajectory learned through
demonstration. To leverage this partial knowledge and en-
hance HRI performance in terms of safety, precision, and re-
duced cognitive load for the user, researchers have employed
a constraint control method known as active constraints
(AC)/virtual fixtures (VF) control. The concept of AC/VF
originated in tele-robotic manipulation, where Rosenberg
introduced force feedback from virtual environments to ease
the cognitive burden on the user [24, 25]. Since then, AC/VF
techniques have found applications in various domains, in-
cluding surgical procedures, industrial tasks, and underwater
robotics. The adoption of virtual fixtures can be considered
as a specialized application of shared control [26].

VF can be classified as virtual fixtures intended for
establishing boundaries around restricted areas or virtual
fixtures meant to aid in directing towards a desired path;
notice that, a guidance virtual fixture in a particular region
can be considered as a forbidden-region virtual fixture for
its corresponding complementary space, and vice versa.
An extensive survey on VF can be found in [27], which
highlights various approaches for their enforcement. Certain
methods utilize constraint quadratic optimization techniques
[28, 29], albeit at the expense of computational demands
and potential inconsistencies among constraints and cost
functions [27]. Alternatively, some methods use controllers
that do not store energy [30, 31, 32] while others employ
energy storage methods like artificial potential fields (AP)
[33, 34, 35, 36, 37]. To the best of the authors’ knowledge, in
the existing literature on mobile platforms, numerous works
delve into obstacle avoidance; however, these primarily ad-
dress autonomous [38] or semi-autonomous operations in
a teleoperation setup [39], leaving aside physical human-
robot interaction tasks such as co-transportation, which is
the focus of the present work.
2.3. Vibrotactile Devices

The use of warning/feedback devices [40, 41] in indus-
trial scenarios has been considered a feasible solution to
some of the most known challenges in the industry, such
as the reduction of Work-related Musculoskeletal Disorders
(WMDs) [42]. One of the main advantages of these devices
is the underlying cost-profit trade-off.

While other feedback modalities are not recommended
in industrial workplaces due to several issues, such as the
distraction caused by staring at the screens in visual feed-
back [43, 44], the high levels of occupational noise in
audio feedback systems [45], or the discomfort in prolonged
industrial operations due to the applied mechanical pressure
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Fig. 2: High-level scheme of the proposed framework. The Obstacle Feedback Module aims to augment the human awareness of
obstacles in the vicinity detected by the robot’s sensory systems. While the Vibrotactile Warning Unit produces vibratory feedback
to the human through an ErgoTac-Belt indicating the detected obstacle’s location and proximity, the Virtual Fixture Unit prevents
physical contact between the human-robot team and the environment by restricting the end-effector velocity obtained from the
End-Effector Dynamics when a critically close obstacle is present. Lastly, the Whole-Body Controller calculates the required joint
velocities for the mobile platform based on the desired end-effector velocity.

in mechano-tactile feedback devices [46, 47], wearable vi-
brotactile devices is a promising alternative as they do not
jeopardize human senses.

At the same time, they are a viable choice in contrast to
bulky and heavy wearable systems that become unpractical
when the task demands a certain amount of mobility. In ad-
dition, vibrotactile feedback seems to be a profitable option
regarding familiarization with the device and the feedback
modality [48]. The use of this technology to improve users’
awareness in HRI [49], balance control [50], prosthetic con-
trol [47], posture optimization [51], and teleoperation [52]
have already shown promising results.

In our previous work [53], we presented ErgoTac, a
wearable device that uses vibration feedback to improve
human ergonomics when performing heavy industrial tasks.
Performance analysis of ErgoTac in comparison with an-
other haptic-based wearable feedback device is described
in [54]. Later, we used ErgoTac-Belt, which employs four
of the same devices, to guide the user based on the human
center of pressure while walking [13]. Moreover, these kinds
of tactile interfaces are also employed in the literature for
human-robot teams. For example, Casalino et al. employed a
vibrotactile ring to convey information to the user regarding
the state of a collaborative assembly task [55].

3. Proposed Framework
The interconnections between hardware and software

components of our interactive co-transportation framework
are shown in Fig. 2. The employed robotic platform, which

has a manipulator attached on top of its base, is driven
by omnidirectional wheels that allow the platform to avoid
non-holonomic constraints yielding movements over a large
workspace. It is equipped with an anthropomorphic robotic
hand attached to the end-effector to co-carry objects with
the human partner, a Force/Torque sensor at the flange to
measure the wrenches resulting from the interaction, and
Lidars for inspecting the surroundings to detect obstacles.

The proposed framework can be subdivided into three
operational components, namely the End-Effector Dynam-
ics, the Obstacle Feedback Module, and the Whole-Body
Controller. The first one calculates a reference velocity
following a standard admittance control law given in Sec. 3.1
based on the force transferred through the object. The Obsta-
cle Feedback Module aims to augment the human partner’s
sensations and yields awareness of the obstacles outside
the field of view alongside the visible ones by making use
of its Vibrotactile Warning and Virtual Fixture Units. The
first unit starts to generate warning vibrations via ErgoTac-
Belt [13] for conveying information about the location and
proximity of the obstacles before the human-robot team gets
dangerously close to any of them. On the other hand, the
latter restricts the team’s movement in the direction of the
potential collision but only when the distance to the obstacle
becomes critically low. Lastly, the Whole-Body Controller
generates required joint velocities for the robotic platform
using the desired velocity obtained from the Obstacle Feed-
back Module.
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Fig. 3: Illustration of the capsule with length L and radius r𝑐 encompassing the human, the robot, and the object in between.
The activation distances of Virtual Fixture and Vibrotactile Warning Units are denoted by d𝑣𝑓𝑚𝑎𝑥 and d𝑣𝑤𝑚𝑎𝑥, respectively. The center
of the red circles corresponds to the Lidar scan points, and the radius of the circles (r𝑠) is chosen to be large enough to ensure
effective coverage of the gaps between the Lidar points. The 𝐩𝑐 indicates the point on the capsule that is nearest to making
contact with one of the circles. The 𝐩∗

𝑐 refers to the point on the line segment closest to 𝐩𝑐 , while 𝐩𝑓 represents the frontmost
point of the human-robot team, which coincides with 𝐩∗

𝑐 based on the given obstacle localization. Finally, the critical and the unit
robot front vectors are denoted as 𝐯𝑐 and 𝐮𝑟𝑓 , where they point from 𝐩𝑐 to 𝐩∗

𝑐 , and 𝐩𝑓 to the human partner, respectively.

3.1. End-Effector Dynamics
In order to acquire the desired dynamic behavior of the

robot’s end-effector in Cartesian translational space, a mass-
damper model is employed as follows:

𝐌𝑒𝑒𝐯̇𝑒𝑒 + 𝐃𝑒𝑒𝐯𝑒𝑒 = 𝐅𝑒𝑒, (1)
where 𝐯𝑒𝑒 ∈ ℝ3 is the desired translational velocity of
the end-effector, 𝐌𝑒𝑒 and 𝐃𝑒𝑒 ∈ ℝ3×3 are constant positive
defines matrices of the inertia and damping respectively, and
𝐅𝑒𝑒 ∈ ℝ3 is the measured forces exerted at the robot end-
effector.

To ensure safety and prevent the robot from surpassing
its operational limits, the output velocity is saturated with a
unit slope as follows:

𝐯𝑟 =
⎧

⎪

⎨

⎪

⎩

𝐯𝑒𝑒, if ||𝐯𝑒𝑒|| ≤ v𝑚𝑎𝑥
v𝑚𝑎𝑥

𝐯𝑒𝑒
||𝐯𝑒𝑒||

, else , (2)

where v𝑚𝑎𝑥 ∈ ℝ>0 is the maximum allowed velocity mag-
nitude (the saturation limit) and 𝐯𝑟 ∈ ℝ3 is the resultant
velocity after applying saturation.
3.2. Obstacle Feedback Module

Our goal is to prevent any physical contact between
the human-robot team and the surfaces of objects in the
surrounding environment in order to achieve protection for
both. These surfaces are represented by a finite set of points
from the 2D Lidar data of the mobile platform, denoted
as 𝑙 ⊂ ℝ2. To fill the empty spaces resulting from this
representation, we create circles 𝐶(𝐩𝑖; r𝑠) in the x-y plane of
the Lidars, each with a radius r𝑠 ∈ ℝ≥0, centered at the point
𝐩𝑖 ∈ 𝑙. This approach is inspired by [37], where spheres
were used instead of circles to fill the empty space resulting
from the representation of sensitive organs using a 3D point
cloud.

In this work, we consider that the human and robot are
rigidly connected via the object being carried where their

initial relative configuration remains fixed throughout the
interaction. Additionally, we assume that there is minimal
change of the end-effector frame w.r.t. the base frame of
the mobile platform. Thus, the human-robot team can be
enclosed within a capsule shape, defined by a line segment
with length L ∈ ℝ≥0 and radius r𝑐 ∈ ℝ≥0 (see Fig. 3).
Consequently, the objective of preventing physical contact
between the human-robot team and the surrounding environ-
ment is achieved if the capsule does not touch the perimeter
of the overlapping circles.

Let 𝐩𝑓 ∈ ℝ2 represent the position of the frontmost
point of the human-robot team projected onto the x-y plane
of the Lidars, and 𝐮𝑟𝑓 ∈ ℝ2 being the unit robot front
vector pointing from 𝐩𝑓 towards the human (see Fig. 3).
This vector aligns with the negative x-axis of the mobile
platform’s base frame. Utilizing this information, we can
determine the axis of the capsule line in the x-y plane of the
Lidars that encompasses the human-robot team as follows:

𝐩𝑙(𝜎) = 𝐩𝑓 + 𝐮𝑟𝑓L𝜎 ∈ ℝ2, (3)
where 𝜎 ∈ [0, 1] specifies the position along the axis of the
capsule.

Within each control cycle, and for all points 𝐩𝑖 belonging
to the set 𝑙, the nearest point on the line segment of the
capsule is found by 𝐩∗𝑖 = 𝐩𝑙(𝜎∗𝑖 ) where 𝜎∗𝑖 can be found
analytically [56]:

𝜎∗𝑖 =

⎧

⎪

⎨

⎪

⎩

𝜁𝑖, if 0 ≤ 𝜁𝑖 ≤ 1
1, if 𝜁𝑖 > 1
0, if 𝜁𝑖 < 0

, 𝜁𝑖 =
1
L
𝐮T𝑟𝑓 (𝐩𝑖−𝐩𝑓 ) ∈ ℝ (4)

where the operator (...)T symbolises the transpose of a vec-
tor/matrix. Then the resulting closest point on the perimeter
of the capsule is calculated by:

𝐩𝑐𝑖 = 𝐩∗𝑖 +
𝐩𝑖 − 𝐩∗𝑖

||𝐩𝑖 − 𝐩∗𝑖 ||
r𝑐 . (5)
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To exclude the human user and the carried object from
consideration and focus only on the nearest obstacles within
a distance d𝑚𝑎𝑥 ∈ ℝ>0, we define the set:

𝑜 = {𝐩𝑖 ∈ 𝑙 ∶ 0 < 𝑑𝑥𝑖 < d𝑚𝑎𝑥}, (6)
where 𝑑𝑥𝑖 ∈ ℝ represents the distance between the capsule
and the circle 𝐶(𝐩𝑖; r𝑠), and it is given by:

𝑑𝑥𝑖 = ||𝐩𝑖 − 𝐩∗𝑖 || − (r𝑐 + r𝑠). (7)
When the set 𝑜 is not empty, in order to have a smooth

reaction, instead of taking into account only the nearest point
of the point cloud with respect to the capsule, we opt to
represent all the closest points on the capsule perimeter of
the 𝐩𝑖 ∈ 𝑜 by a single point. To give more influence to the
closest points, the represented point is determined through a
weighted calculation as follows:

𝐩̄ =

∑

𝐩𝑖∈𝑜
𝑤𝑖𝐩𝑐𝑖

∑

𝐩𝑖∈𝑜
𝑤𝑖

∈ ℝ2, (8)

where 𝑤𝑖 ∈ ℝ>0 represents the weights. These weights
are exponentially inverse proportional with the distances
between the circles 𝐶(𝐩𝑖; r𝑠) and the capsule as follow:

𝑤𝑖 = 𝑒𝑥𝑝(−𝛼𝑑𝑥𝑖), (9)
where 𝛼 ∈ ℝ>0 is a scalar gain. By doing so, we ensure
that the resulting point is profoundly influenced by its nearest
neighbors. Since the average point 𝐩̄ may not lie within the
capsule perimeter, we project this point onto the capsule
surface as follows:

𝐩𝑐 = 𝐩̄∗ + 𝐩̄ − 𝐩̄∗

||𝐩̄ − 𝐩̄∗||
r𝑐 ∈ ℝ2, (10)

where 𝐩̄∗ is the nearest point on the line segment of the
capsule to the point 𝐩̄, which is calculated by utilizing (3)
and (4) substituting 𝐩𝑖 with 𝐩̄. The respective critical vector
𝐯𝑐 ∈ ℝ2, depending on whether the set 𝑜 is empty or not,
is given by:

𝐯𝑐 =
⎧

⎪

⎨

⎪

⎩

𝐩∗𝑐 − 𝐩𝑐
||𝐩∗𝑐 − 𝐩𝑐||

𝑜 ≠ ∅

𝟎2×1 else
, (11)

where 𝐩∗𝑐 is the nearest point on the line segment of the
capsule to the point 𝐩𝑐 , which is calculated by utilizing (3)
and (4) substituting 𝐩𝑖 with 𝐩𝑐 . It is worth noting that when
the projected velocity of the robot’s end-effector in the x-y
plane forms an obtuse angle with the critical vector 𝐯𝑐 , it
indicates that the human-robot team is moving towards the
nearest obstacles.

In this work, we utilized the distances 𝑑𝑥𝑖 and the critical
vector 𝐯𝑐 to determine the proximity of the human-robot
team to the obstacles and the likelihood of collisions between
them. To mitigate this potential danger, we propose imple-
menting two layers of feedback reactions that are activated at

different distances denoted as d𝑣𝑤𝑚𝑎𝑥 and d𝑣𝑓𝑚𝑎𝑥 (see Sec. 3.2.1
and Sec. 3.2.2 ). The first layer comprises a warning system
that notifies the human via vibrotactile vibrations. The sec-
ond layer imposes limitations on the motion of the human-
robot team, preventing any contact with the obstacles, which
also serves as kinesthetic feedback to the user.
3.2.1. Vibrotactile Warning Unit

This module aims to alert the human operator about the
closeness and the location of obstacles in the vicinity using
the Ergotac-Belt, which consists of 4 vibrotactile feedback
devices representing the body relative directions (see Fig.
2). This module is enabled when an obstacle is at a distance
smaller than d𝑣𝑤𝑚𝑎𝑥 ∈ ℝ>0 from the human-robot team
capsule. In such cases, we calculate the critical vector 𝐯𝑣𝑤𝑐 ,
as given by (11), based on the set 𝑣𝑤

𝑜 from (6), substituting
d𝑚𝑎𝑥 with d𝑣𝑤𝑚𝑎𝑥.

In this work, we decided not to vibrate more than
one vibrotactile device simultaneously, as in our previous
study [13], in order to avoid the cognitive burden of the
human operator. Therefore, we generate warnings only for
the nearest object by exploiting −𝐯𝑣𝑤𝑐 . As depicted in Fig. 3,
the angle between −𝐯𝑣𝑤𝑐 and 𝐮𝑟𝑓 is represented by 𝜃𝐯

𝑣𝑤
𝑐

𝐮𝑟𝑓 that
indicates the region in which includes the closest points in
the vicinity. Each region can be represented by two border
angles, 𝜃𝑏1 and 𝜃𝑏2 , with a consistent 90-degree difference
between these across all four regions. The warnings are
regulated to prevent fluctuations between different ErgoTacs
when the nearest object is close to the border of the two
adjacent areas. To do so, we enabled switching to a new
vibrotactile feedback device if only the 𝜃𝐯

𝑣𝑤
𝑐

𝐮𝑟𝑓 has deviated
from the border angles of the previously warned region by a
specified threshold, denoted as 𝜃𝑡ℎ.

Moreover, the intensity of the vibrations is adjusted
based on the minimum distance between the circles 𝐶(𝐩𝑖; r𝑠)and the capsule. This distance can be derived as:

d𝑜𝑏𝑠 = min
𝐩𝑖∈𝑣𝑤

𝑜
{𝑑𝑥𝑖}, (12)

where 𝑑𝑥𝑖 is given by Eq. (7). In particular, the intensity of
the vibration is determined by the following rule:

𝐼𝑡 =

{

1 d𝑜𝑏𝑠 ≤ d𝑐𝑟𝑖𝑡
1 − d𝑜𝑏𝑠−d𝑐𝑟𝑖𝑡

d𝑣𝑤𝑚𝑎𝑥−d𝑐𝑟𝑖𝑡
d𝑐𝑟𝑖𝑡 < d𝑜𝑏𝑠 ≤ d𝑣𝑤𝑚𝑎𝑥.

(13)

This rule adjusts the intensity of warning vibrations as a
linear function of the distance d𝑜𝑏𝑠. The maximum intensity
is achieved at a critical distance (d𝑐𝑟𝑖𝑡 < d𝑣𝑤𝑚𝑎𝑥), while the
minimum occurs at the maximum distance (d𝑣𝑤𝑚𝑎𝑥).

For clarity, the pseudocode for selecting the region (𝑅𝑡)to be vibrated associated with the appropriate ErgoTac de-
vice and the intensity of the vibrations (𝐼𝑡) is given in
Algorithm 1.
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Algorithm 1 Obstacle-Aware Vibrotactile Warning
Input: 𝑅𝑡−1, 𝑣𝑤

𝑜 , RobotOdometry
Output: 𝑅𝑡, 𝐼𝑡
d𝑜𝑏𝑠 ← 𝑔𝑒𝑡𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ⊳ Eq. (12)
if d𝑜𝑏𝑠 > d𝑣𝑤𝑚𝑎𝑥 then

𝑅𝑡 ← 𝑁𝑜𝑛𝑒
𝐼𝑡 ← 0

else
𝐯𝑣𝑤𝑐 ← 𝑔𝑒𝑡𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑉 𝑒𝑐𝑡𝑜𝑟 ⊳ Eq. (11)
𝐮𝑟𝑓 ← 𝑔𝑒𝑡𝑈𝑛𝑖𝑡𝑅𝑜𝑏𝑜𝑡𝐹 𝑟𝑜𝑛𝑡𝑉 𝑒𝑐𝑡𝑜𝑟

𝜃𝐯
𝑣𝑤
𝑐

𝐮𝑟𝑓 ← 𝑔𝑒𝑡𝐴𝑛𝑔𝑙𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛(−𝐯𝑣𝑤𝑐 ,𝐮𝑟𝑓 )

𝑅∗ ← 𝑔𝑒𝑡𝑅𝑒𝑔𝑖𝑜𝑛(𝜃𝐯
𝑣𝑤
𝑐

𝐮𝑟𝑓 )
if 𝑅∗ equal to 𝑅𝑡−1 then

𝑅𝑡 ← 𝑅∗

else
(𝜃𝑏1 , 𝜃𝑏2 ) ← 𝑔𝑒𝑡𝐵𝑜𝑟𝑑𝑒𝑟𝐴𝑛𝑔𝑙𝑒𝑠(𝑅𝑡−1)
if 𝑚𝑖𝑛{|𝜃𝐯

𝑣𝑤
𝑐

𝐮𝑟𝑓 − 𝜃𝑏1 |, |𝜃𝐯
𝑣𝑤
𝑐

𝐮𝑟𝑓 − 𝜃𝑏2 | > 𝜃𝑡ℎ} then
𝑅𝑡 ← 𝑅∗ ⊳ Switch

else
𝑅𝑡 ← 𝑅𝑡−1 ⊳ No Switch

end if
𝐼𝑡 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(d𝑜𝑏𝑠) ⊳ Eq. (13)

end if
end if

3.2.2. Virtual Fixture Unit
This module is enabled when the human-robot team is

dangerously close to obstacles, i.e., when there is at least one
circle 𝐶(𝐩𝑖; r𝑠) that is at a distance smaller to d𝑣𝑓𝑚𝑎𝑥 ∈ ℝ>0
from the human-robot team capsule, where d𝑣𝑓𝑚𝑎𝑥 < d𝑣𝑤𝑚𝑎𝑥.
In this case, the critical vector 𝐯𝑣𝑓𝑐 ∈ ℝ2, given by (11),
is calculated based on the set 𝑣𝑓

𝑜 ⊂ 𝑙 given by (6),
with d𝑚𝑎𝑥 substituted by d𝑣𝑓𝑚𝑎𝑥. When the set 𝑣𝑓

𝑜 is not
empty, our objective is to stop the motion of the human-
robot team when the projected velocity of the end-effector
𝐯𝑟𝑥𝑦 = 𝐯𝑟{1∶2} ∈ ℝ2 forms an obtuse angle with the critical
vector 𝐯𝑣𝑓𝑐 , i.e., when 𝐯𝑟𝑥𝑦

T𝐯𝑣𝑓𝑐 < 0, as this indicates that the
human-robot team is moving towards the obstacles.

To achieve this, we calculate the desired end-effector
velocity as follows:

𝐯𝑑𝑒𝑠 = (1 − 𝑏)𝐯𝑟 ∈ ℝ2, (14)
where 𝐯𝑟, given by (2), represents the resultant velocity
obtained after applying the saturation function to the desired
velocity and 𝑏 ∈ ℝ is a function that takes values between
zero and one. This function is utilized to determine whether
to allow or restrict the resultant velocity based on the poten-
tial collision. To ensure a smooth reaction, we design this
function as a dynamic system:

𝑏̇ = 𝑓 (𝑏, 𝐯𝑣𝑓𝑐 , 𝐯𝑟). (15)
This approach allows continuous adjustment of the variable
𝑏 in response to changes in the desired end-effector velocity
(𝐯𝑑𝑒𝑠) and the resultant velocity (𝐯𝑟).

To achieve quick and smooth responses, in this work, we
choose the following function:

𝑓 (𝑏, 𝐯𝑣𝑓𝑐 , 𝐯𝑟) = −a𝑥
(

𝑏 − 𝛽(𝐯𝑣𝑓𝑐 , 𝐯𝑟)
)

, (16)
which provides an exponential response to the 𝑏 variable,
where a𝑥 ∈ ℝ>0 is a gain that indicates how rapidly the
exponential function decays and 𝛽 ∈ ℝ is given by:

𝛽(𝐯𝑣𝑓𝑐 , 𝐯𝑟) =
{

0, if 𝐯𝑟𝑥𝑦
T𝐯𝑣𝑓𝑐 ≥ 0

1, else . (17)

This step function serves as an indicator of the activation
of the virtual fixture enforcement. It’s important to note
that the variable 𝑏 tends exponentially towards 𝛽. Therefore,
when the constraint is activated (𝛽 = 1), the commanded
velocity tends towards zero. In order to ensure that the
human-robot team will never touch the obstacles, the gain a𝑥must be carefully selected based on the maximum Cartesian
velocity produced by the End-Effector Dynamics (v𝑚𝑎𝑥) and
the distance d𝑣𝑓𝑚𝑎𝑥. Specifically, the following condition must
hold true:

a𝑥 >
v𝑚𝑎𝑥
d𝑣𝑓𝑚𝑎𝑥

. (18)

This condition can be easily proved by calculating the solu-
tion of (15) for 𝑏 and then taking the integral of (14).

Alternatively, another way to design 𝑏 can be by using
the function 𝑓 (𝐯𝑣𝑓𝑐 , 𝐯𝑟) = −𝛾𝑎𝑥, and then constraining 𝑏 to
move within the [0, 1] range, with 𝛾 given by:

𝛾(𝐯𝑣𝑓𝑐 , 𝐯𝑟) =
{

−1, if 𝐯𝑟𝑥𝑦
T𝐯𝑣𝑓𝑐 ≥ 0

1, else . (19)

In this way, the desired end-effector velocity can be set
exactly to zero.
3.3. Whole-Body Controller

In this study, a (n𝑏+n𝑎)-DoF mobile manipulator is con-
trolled using a weighted whole-body damped least-squares
inverse kinematics controller, where the base and arm have
n𝑏 and n𝑎 degrees of freedom, respectively. This scheme
calculates the desired joint velocities 𝐪̇𝑑 ∈ ℝn𝑏+n𝑎 resulting
in the desired end-effector while exploiting the redundancy
of the robot as the secondary task. The primary cost function
that is implemented to track the desired end-effector velocity
is expressed as:

1 = ||𝐱̇𝑟 − 𝐉𝐪̇||2𝐖1
+ ||𝑘𝐪̇||2𝐖2

, (20)
where 𝐱̇𝑟 = [𝐯T𝑑𝑒𝑠 𝐯𝑟{3} 𝟎1×3]T ∈ ℝ6 is the desired twist of
the end-effector, 𝐯𝑟{3} represents the velocity in the z-axis
resulting from the end-effector dynamics after saturation,
𝐉 ∈ ℝ6×(n𝑏+n𝑎) is the whole-body robotic Jacobian, 𝐖1
∈ ℝ6×6 and 𝐖2 ∈ ℝ(n𝑏+n𝑎)×(n𝑏+n𝑎) are diagonal positive
definite matrices and 𝑘∈ℝ>0 is the so-called damping factor
[57], which depends on the manipulability index of the arm
to avoid kinematic singularities [58, 59, 60].
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The secondary task that keeps the arm close to the initial
configuration is formulated as the following cost function:

2 = ||𝐪𝑖𝑛𝑖𝑡 − 𝐪||2𝐖3
, (21)

where 𝐪𝑖𝑛𝑖𝑡 is the initial joint configuration and 𝐖3 =
𝑑𝑖𝑎𝑔{𝟎n𝑏 , 𝜁𝟏n𝑎} ∈ ℝ(n𝑏+n𝑎)×(n𝑏+n𝑎) is a diagonal positive
semidefinite matrix with 𝜁 being the null-space gain. The
desired joint velocities, which minimize this secondary cost
function, are calculated as the negative gradient of it pro-
jected onto the null-space of the first task. A detailed ex-
planation of this whole-body controller can be found in our
previous work [61].

4. EXPERIMENTS
The experiments were designed to evaluate the effec-

tiveness of the units in the Obstacle Feedback Module, as
in the absence of the feedback they provided, the operator
would be unable to navigate to the target location without
encountering any collisions. To this end, the participants
were asked to co-carry an object until they reached the finish
line that was located 2.8 m ahead of their initial point, where
they were unaware of the positions of obstacles placed in the
environment. The videos of these experiments with an addi-
tional demonstration where the operator aimed to reach the
target line while the position of an obstacle was dynamically
changed are available at https://youtu.be/BRvDC8XLOWM.
4.1. Experimental Setup

In the experiments, the Kairos mobile manipulator is
employed as the robotic platform for executing the co-
transportation task with the human partner. It comprises
an Omni-directional Robotnik SUMMIT-XL STEEL mobile
base, a high payload 6-DoFs Universal Robot UR16e arm
with an F/T sensor to measure the applied wrenches at the
robot’s flange, a Pisa/IIT Softhand gripper, and two 2D
SICK Microscan Lidar sensors. These sensors are located
at the back and front of the robot base and 30 cm above the
ground, providing a 360-degree sensing range. The ErgoTac-
Belt is composed of 4 ErgoTac units located at the front
(F), right (R), left (L), and back (B) of the operator at the
L5 level (see Fig. 2). At the user side, robust and pleasant
vibration feedbacks are generated thanks to ErgoTac’s small
dimension (68.1 mm × 37.0 mm × 17.3 mm), lightweight
(28 g), and wireless communication feature with low energy
consumption (multi-point connection via Bluetooth low en-
ergy at 2.4 GHz).

The values of the parameters for the proposed framework
utilized in the experiments are outlined in Table 1. As the
experiments were carried out in the x-y plane, the mass
and damping parameters of the z-axis were deliberately set
to high values to avoid movements along the z-axis. The
length (L) and the radius (r𝑐) of the capsule were selected
large enough to encompass the human, the mobile robot,
and the object in between, which is a 4.7 kg box with
dimensions of 80 × 60 × 105 cm (see Fig. 1). The co-carried
object was intentionally chosen such that it would obscure

Table 1
Value of parameters used in the experimental setup

End-Effector Dynamics (Sec. 3.1)
Parameter Value
𝑴 𝑒𝑒 𝑑𝑖𝑎𝑔{40, 20, 50}
𝐃𝑒𝑒 𝑑𝑖𝑎𝑔{90, 50, 1000}
v𝑚𝑎𝑥 0.5
Obstacle Feedback Module (Sec. 3.2)
Parameter Value
L 2.3
r𝑐 0.5
r𝑠 0.02
𝛼 100
Vibrotactile Warning Unit (Sec. 3.2.1)
Parameter Value
θ𝑡ℎ 5
d𝑣𝑤𝑚𝑎𝑥 0.6
d𝑐𝑟𝑖𝑡 0.25
Virtual Fixture Unit (Sec. 3.2.2)
Parameter Value
d𝑣𝑓𝑚𝑎𝑥 0.25
a𝑥 8
Whole-Body Controller (Sec. 3.3)
Parameter Value
n𝑎 6
n𝑏 3
𝐖1 𝑑𝑖𝑎𝑔{10001𝑥3, 5001𝑥3}
𝐖2 𝑑𝑖𝑎𝑔{𝟓𝑛𝑏 , 𝟐𝑛𝑎}
𝜁 3

a substantial portion of the human’s frontal and peripheral
vision, making it challenging for the participants to see
most of the surroundings. Moreover, d𝑣𝑓𝑚𝑎𝑥 was selected to
be equal to dcrit . This equivalence is attributed to the aim of
achieving the highest level of vibration when the constraint
unit is enabled. The choice of values for the parameters
a𝑥, v𝑚𝑎𝑥, and d𝑣𝑓𝑚𝑎𝑥 was specifically designed to uphold the
validity of condition (18) which ensure that no collision will
occur. Furthermore, the chosen parameters of the whole-
body controller leveraged the locomotion behavior of the
mobile robot, where the relative arm configuration w.r.t to
the base was kept almost the same throughout the task.
4.2. Experimental Procedure

The co-transportation experiments have been conducted
using 4 different feedback modalities, which are the com-
binations of the units in the Obstacle Feedback Module.
These are: without any feedback as a baseline (BL), with
only virtual fixture (VF), with only vibrotactile warning
(VW), and with the combined use of virtual fixture and
vibrotactile warning (VF + VW). Before the experiments,
a familiarization phase was carried out separately for the
virtual fixture and vibrotactile warning feedback modalities.
This phase continued until the subjects felt comfortable with
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these modalities, and they were informed that there could be
different combinations of these during the experiments.

To prevent the subjects from learning the obstacle posi-
tions, we designed 4 different scenarios with varied obstacle
placements. The visual representation of these scenarios can
be found in Fig. 4. In each of the scenarios, the obstacles
were strategically placed in locations where they were not
initially visible to the human and remained occluded for
the majority of the experiment. It should be noted that each
scenario includes an obstacle positioned directly behind the
robot base, creating a situation where a collision would occur
before they reached the target line. Once the obstacles were
placed, the participants were instructed to reach the finish
line by taking the shortest path possible while maintaining a
comfortable distance from the obstacles around.

The experiments were conducted with 8 female and 8
male (age: 26.8 ± 6.7 years; mass: 64.9 ± 16.2 kg; height:
172.4 ± 10.1 cm)3 volunteers in accordance with the Dec-
laration of Helsinki, and the protocol was approved by the
ethics committee Azienda Sanitaria Locale (ASL) Genovese
N.3 (Protocol IIT_HRII_ERGOLEAN 156/2020). Each par-
ticipant performed the co-transportation experiment 4 times.
In these trials, all the feedback modalities and the designed
scenarios were executed randomly, one for each. In total,
each feedback modality was tested 16 times across all four
scenarios. Additionally, to eliminate the learning effect be-
tween trials, the order of the experiments was arranged in
a way that in each trial order, all feedback modalities and
scenarios were carried out 4 times.
4.3. Performance Metrics and Assessment Tools

At the end of each trial, the participants were asked
to complete two questionnaires: NASA-TLX (NASA Task
Load Index) [62] and SUS (System Usability Scale) [63].
These questionnaires were used to rate the qualitative aspects
of the participant’s experience for each feedback modality
employed during the experiments. While the NASA-TLX
assesses participants’ perceived workload and task difficulty,
the SUS evaluates the user-friendliness and usability of the
modalities. In addition to these qualitative questionnaires,
the following metrics are formulated for the quantitative
analysis of task-related performance:

• Success Rate (𝐒𝐑): It indicates the percentage of tri-
als where participants reached the target line without
having collisions with obstacles.

• Completion Time (𝐂𝐓): The total time from the
beginning of the co-carry task to the end is recorded
for each trial. Notice that this metric is calculated only
when the human-robot team did not collide with the
obstacle.

• Trajectory Length (𝐓𝐋): This is the total distance
covered by the participants while reaching the target
line. In order to compute this metric, we utilized the
position data of the mobile base since the human

3Subject data is reported as: mean ± standard deviation.

and the robot were rigidly connected during the ex-
periments. Similar to the previous metric, this one
is also calculated only when the trial is considered
successful.

• Virtual Fixture Activation (𝐕𝐅𝐀): This metric is
formulated to calculate the activation percentage of
the virtual fixture for each trial. It is computed as:

𝐕𝐅𝐀 =
∫ te
ts

𝛽(𝑡)𝑑𝑡

te − ts
, (22)

where 𝑡𝑠 and 𝑡𝑒 are the starting and ending times of the
experiment, and 𝛽 is a step function that indicates the
virtual fixture activation (see Eq. 17).

5. RESULTS AND DISCUSSION
Fig. 4 depicts the experimental results for a single par-

ticipant who carried out four randomized trials, as explained
in Sec. 4.2. In this figure, the left column plots illustrate
the paths of the mobile base until the participant reaches
the finish line, along with the dimensions of the room in
which the experiment was executed and the positions of
the obstacles located in the environment. The corresponding
plots on the right show the results collected from these trials.
The performed trials with different feedback modalities are
presented in the following order from top to bottom: Baseline
(BL) with Scenario 3 (Fig. 4a), Virtual Fixture (VF) with
Scenario 4 (Fig. 4b), Vibrotactile Warning (VW) with Sce-
nario 1 (Fig. 4c), and the combined use of Virtual Fixture and
Vibrotactile Warning (VF + VW) with Scenario 2 (Fig. 4d).

During the BL trial, the participant directly proceeded
with a forward movement toward the finished line, align-
ing with the goal of minimizing the trajectory length (see
Fig. 4a). However, the trial could not be completed because
of the collision. This indicates that the participant was un-
able to see the obstacle as it was occluded by the object being
carried.

On the other hand, in the second trial, the participant
could successfully finish the task where the VF feedback
modality was available (see Fig. 4b). Thanks to the virtual
fixture, the intended movement of the participant towards
the obstacles was constrained to avoid collisions when the
human-robot dyad was critically close to them. During the
brief period indicated by the shaded area A in Fig. 4b3, it
can be seen how the virtual fixture starts to operate. Here,
the value of 𝑏 (Eq. 15), which indicates the activation of
the virtual fixture, goes to 1, leading to the filtering of the
desired velocity towards the obstacle (see 𝑣𝑥 tends to 0).
Following this, despite the participant’s continuous attempts
to move directly in the X direction that may cause potential
collisions (see increase in𝐹𝑥 in Fig. 4b1), the robot remained
stationary. When the participant started to apply the forces
to switch the motion direction to the left, the 𝑏 value tends
to 0 to allow movement (see highlighted area B in Fig. 4b3).
Finally, the participant successfully reached the target line by
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Fig. 4: Results of the experiments of a single participant. The plots illustrate the trials with (a) Baseline (BL) with Scenario 3, (b)
Virtual Fixture (VF) with Scenario 4, (c) Vibrotactile Warning (VW) with Scenario 1, and (d) the combined use of Virtual Fixture
and Vibrotactile Warning (VF + VW) with Scenario 2. While the left column plots display the paths of the mobile platform
as the participant navigates towards the finish line, along with the positions of the obstacles located in the environment. The
corresponding plots on the right present the results collected from these trials.
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Fig. 5: The means and the standard errors of the performance metrics for the feedback modalities considering the successful
trials. In addition, the outcomes of the sign-test conducted between the VF and VF+VW are reported where *** indicates p <
0.001.

readjusting the route to the front after maintaining a sideway
motion until moving away from the obstacle.

At the beginning of the third trial, the participant expe-
rienced the vibration stimuli due to close proximity to the
wall behind (see Fig. 4c3). As the participant proceeded with
forward motion, the intensity of this vibration decreased.
Subsequently, the vibrated region altered to the front and
increased as the robot approached the obstacle. When the
intensity reached its maximum, indicating that there exists a
very close obstacle behind the robot, the participant changed
the motion by moving to the right (see highlighted area A
in Fig. 4c1). During this sideways movement with a slight
forward component, the vibration region shifted to the left,
providing information that the object was no longer behind
the robot. When the intensity of this vibration decreased, the
participant started to follow a more direct route toward the
finish line (see highlighted area B in Fig. 4c1). The exper-
iment was completed successfully with a small adjustment
to the left at the end since ErgoTac-Belt generated feedback
regarding the wall on the right (see highlighted area B in
Fig. 4c3).

In the final trial, the participant reached the target line
without having any collision, thanks to VF and VW feedback
modalities. After a slightly deviated forward movement to
the right at the beginning of the trial, the virtual fixture
became active due to the obstacle on the right illustrated
by the shaded area A in Fig. 4d2. Since the vibrotactile
stimuli warned the participant about the obstacle on the
right, the participant decided to move to the left when the
virtual fixture constrained the motion. Following a small
sideway movement, the participant decided to move diago-
nally towards the finish line. However, the virtual fixture and
vibrotactile warning indicated the obstacle behind the robot,
resulting in the continuation of the sideway motion (see
highlighted area B in Fig. 4d2, Fig. 4d3)). When the front
ErgoTac device stopped vibrating, the participant finished
the experiment by going directly to the finish line (see
highlighted area B in Fig. 4d3).

Table 2
Success Rate of the feedback modalities with the designed
scenarios

S1 S2 S3 S4
Baseline (BL) 0/4 0/4 0/4 0/4 0%
Virtual Fixture (VF) 4/4 4/4 4/4 4/4 100%
Vibrotactile Warning (VW) 4/4 2/4 3/4 3/4 75%
VF+VW 4/4 4/4 4/4 4/4 100%

The success rate of the feedback modalities during the
designed scenarios is reported for all participants in Ta-
ble 2. As anticipated, none of the participants were able
to complete the task without any feedback (BL). On the
other hand, when the virtual fixture was employed (VF
or VF+VW), all the participants reached the finish line
without experiencing any collisions. This result is aligned
with the evidence that the virtual fixture effectively prevents
collisions with the environment. As previously explained,
although the vibrotactile warning assists the participants
by informing them about the object’s location, it may not
entirely avoid collisions. Indeed, four participants could not
finish the trial due to collisions where only vibrotactile
warning feedback was available.

Fig. 5 displays the means and the standard errors of
the remaining performance metrics described in Sec. 4.3.
These results were calculated based on the successful trials
of the participants, which consisted of 16 trials for VF and
VF+VW and 12 trials for VW. Given the difference in the
number of successful trials for VW, we conducted the sign-
test only between VF and VF+VW. As can be seen from
Fig. 5a, the mean completion time is the highest for VF
among the feedback modalities, whereas VW has the lowest
one. However, no statistically significant difference is ob-
served between VF and VF+VW. When the trajectory length
results are analyzed (see Fig. 5b), similar patterns to the
completion time emerge, with VF having the longest mean
trajectory and the shortest mean trajectory being achieved
with VW. Furthermore, there is no statistically significant
difference between VF and VF+VW. These results can be
explained as follows: When only the VF feedback modality
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Fig. 6: The means and the standard errors obtained from the NASA-TLX questionnaires for the feedback modalities along with
the outcomes of the sign-test carried out: *: p < 0.05, **: p < 0.01, ***: p < 0.001. (MD: Mental Demand, PD: Physical
Demand, TD: Temporal Demand, PE: Performance, EF: Effort, FR: Frustration, WL: Overall Workload)

is employed, the participants tend to follow a longer trajec-
tory due to deviations from the shortest path while trying
to comprehend the location of the obstacles. On the other
hand, as a result of the valuable information that vibro-
tactile warning provides about the environment, it allows
participants to make more informed and efficient decisions
during navigation. The statistically significant decrease (p <
0.001) in virtual fixture activation when the virtual fixture
was combined with vibrotactile warning further supports
this argument (see Fig. 5c). The presence of the vibrotactile
warning before the human-robot team approached the obsta-
cle closely enough to activate the virtual fixture allowed the
participants to avoid obstacles more efficiently.

The qualitative results obtained from the NASA-TLX
questionnaire, which consist of the participants’ scores for
their perceived workload across six subscales and the com-
puted overall workload, are presented in Fig. 6. In this
figure, the means and standard errors for all the questionnaire
categories of the feedback modalities are represented as bar
plots, along with the outcomes of the sign-tests. Because
none of the participants achieved to reach the target line
with the BL feedback modality, all of them rated a score of
100 for the Performance category, representing the lowest
possible score in NASA-TLX. For this category, the remain-
ing feedback modalities demonstrate significantly superior
scores compared to the BL (p < 0.001). Moreover, the
participants perceived significantly higher frustration during
BL experiments than VW and VF+VW (p < 0.05). On the
other hand, BL has the minimum mean for the Physical
Demand category, which is significantly different from VF
(p < 0.05). This is because participants tried to complete the
task with direct forward movement without any feedback,
and the experiment stopped early when they hit the obstacles.
However, completing the task is more physically demanding
during VF trials due to adjustments required in case the
virtual fixture is active. When the overall workload results
are analyzed, it can be seen that the participants favored
having feedback about the obstacles located in the envi-
ronment during the co-transportation task, indicated by the
statistically significant differences between BL and the other

feedback modalities. The minimum mean for the workload
is obtained with VF+VW, which has significantly superior
scores compared to VW.

The result of the SUS questionnaire reported in Fig. 7
shows that the average score of BL was significantly lower
than the other feedback modalities. Besides, the participants
favored the combination of the two feedback units most,
while all feedback modalities except BL were categorized
as highly acceptable. Additionally, because the score of BL
is below the usability limit [64], this modality is considered
unacceptable for use, given the fact that none of the partici-
pants were able to complete the co-carrying task without any
feedback.

Fig. 7: The means and the standard errors obtained from the
SUS questionnaires for the feedback modalities along with the
outcomes of the sign-test carried out: *: p < 0.05, ***: p <
0.001.

It is important to note that the proposed method is not
restricted to any particular task. For any task involving phys-
ical interaction between the mobile platform and humans,
the proposed method can be employed to ensure the human-
robot team avoids collision with surroundings by providing
warnings about the proximity of the obstacles. For example,
the proposed method can be integrated into a robotic walking
support system [65], or applied to entertainment tasks such
as human-robot dancing [66, 67].
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In order to employ our situational awareness framework
in the practical use cases mentioned above, it is necessary
to identify its current limitations. In our framework, the
human and the robot are enclosed within a capsule, assuming
they initially face each other and maintain their respective
positions while jointly transporting the object in between.
However, certain manipulation tasks can be carried out more
easily and effectively when the operator has the flexibility
to adopt various configurations relative to the robot during
co-carrying. Moreover, when we consider the drawbacks of
the robot’s sensory system, the incorporated Lidars limit
the perception into a 2D plane. Despite Lidars being less
affected by environmental conditions such as weather and
changes in light compared to other vision-based sensors,
the inherent challenge linked to this technology is the ex-
istence of excessive reflections in the surroundings. These
reflections can elevate the noise level, potentially leading to
false activation of VF and VW modules. Nevertheless, we
did not have any noise-related issues in the Lidar’s 2D scan
during our experiments, as expected, since this limitation
may emerge in environmental conditions that are far from
ideal. Additionally, denoising Lidar noise has been exten-
sively explored in the literature [68], thus there are various
techniques available to overcome this limitation when it
emerges.

6. CONCLUSION
In this article, we have proposed a human-robot collab-

orative transportation framework that includes as a main
novelty a multi-modal haptic feedback module that informs
the human operator of the presence of obstacles in the
environment by augmenting their sensory capabilities with
the robot’s sensory system. The module integrates a haptic
feedback unit at the cutaneous level thanks to four vibro-
tactile devices placed in a belt on the subject’s body and a
unit that acts at the kinesthetic level through virtual fixtures.
The latter incorporates an additional safety layer as it not
only warns the user but also prevents the robot from coming
into contact with obstacles. The manuscript has described
in detail the functionality of both systems, as well as their
integration within the robot controller and sensory system
in our previously developed feedback-less co-transportation
framework. Experiments have been carried out, allowing an
objective evaluation thanks to quantitative metrics and sub-
jective evaluations based on the user-level experiences of 16
participants who have tested the system in a real industrial-
like environment. In addition, a comparative analysis of both
haptic feedback modalities and a statistical analysis has also
been conducted to establish which modality is the desired
one based on several factors.

The outcomes of this work conclude that this new mod-
ule improves the situational awareness of the human oper-
ator. The experimental evaluation results with non-expert
subjects indicated that the haptic feedback provided by the
module enabled the human partner to perform a co-transport
task even in extreme situations where the operator’s field of

view is highly compromised. Thus, it improved the human-
robot team’s safety allowing the human operator to com-
mand the team in an unknown environment with unknown
and hidden obstacles. Furthermore, the study concludes
that integrating both haptic feedback modalities is the best
solution and is preferred by the participants.

In the future, we plan to focus on investigating and
implementing potential solutions to address the existing lim-
itations previously discussed in Sec. 5. For instance, a human
leg-tracker module can be developed and incorporated with
the proposed framework to dynamically reconfigure the rel-
ative position of the human with respect to the robot in real-
time. Furthermore, a natural extension for our perception
module could be the integration of the 3D Lidar system. This
integration will allow us to adjust the controller parameters
on the fly to prioritize the movement to the arm or the base
taking into account the 3D mapping of the obstacle.
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