
UNIVERSIDAD DE MÁLAGA

ESCUELA DE INGENIERÍAS INDUSTRIALES

TRABAJO FIN DE GRADO

DESARROLLO DE UN ENTORNO DE
SIMULACIÓN UNITY-ROS2 PARA LA
EVALUACIÓN SLAM DE VEHÍCULOS

AUTÓNOMOS.

GRADO EN INGENIERÍA

ELECTRÓNICA, ROBÓTICA Y MECATRÓNICA

SUPERVISOR: JUAN MANUEL GANDARIAS PALACIOS

CO-SUPERVISOR: ALONSO LLORENTE

KNOWLEDGE AREA: INGENIERÍA DE SISTEMAS Y AUTOMÁTICA

LUIS ARCE ARANDA

MÁLAGA, JANUARY 15, 2025

ESCUELA DE INGENIERÍAS INDUSTRIALES, UNIVERSIDAD DE MÁLAGA

DESARROLLO DE UN ENTORNO DE SIMULACIÓN

UNITY-ROS2 PARA LA EVALUACIÓN SLAM DE

VEHÍCULOS AUTÓNOMOS.

Autor: Luis Arce Aranda

Tutor: Juan Manuel Gandarias Palacios

Cotutor: Alonso LLorente

Departamento: Ingeniería de Sistemas y Automática

Titulación: Grado en Ingeniería Electrónica, Robótica y Mecatrónica

Palabras clave: SLAM, marco de simulación, Unity, ROS2, sensores LiDAR,
simulación de lluvia, sistemas de percepción, condiciones ambientales, robótica
autónoma.

Resumen

Este proyecto tiene como objetivo desarrollar un entorno de simulación real-
ista utilizando Unity y ROS2 para la evaluación de algoritmos de SLAM en vehícu-
los autónomos. La simulación incorpora sensores como LiDAR e IMU, además
de condiciones ambientales adversas, como lluvia, para evaluar la robustez de
los sistemas de percepción y navegación. Se diseñaron escenarios específi-
cos que emulan entornos complejos y dinámicos, como canales urbanos, permi-
tiendo pruebas exhaustivas de los sistemas autónomos en condiciones contro-
ladas.

Los resultados incluyen un modelo de simulación de lluvia que introduce ruido
y atenuación en las mediciones de LiDAR, mejorando la validación de algoritmos
de percepción. Este marco de simulación no solo permite evaluar la precisión
y fiabilidad de los sistemas SLAM, sino que también proporciona datos sintéti-
cos para la mejora de estos algoritmos, contribuyendo al desarrollo de sistemas
autónomos más robustos y preparados para entornos reales.

iii

SCHOOL OF INDUSTRIAL ENGINEERING, UNIVERSITY OF MÁLAGA

DEVELOPMENT OF A UNITY-ROS2 SIMULATION

ENVIRONMENT FOR SLAM EVALUATION FOR

AUTONOMOUS VEHICLES

Author: Luis Arce Aranda

Supervisor: Juan Manuel Gandarias Palacios

Co-supervisor: Alonso LLorente

Department: Systems and Automation Engineering

Degree: Bachelor’s Degree in Electronics, Robotics, and Mechatronics Engineer-
ing

Keywords: SLAM, simulation framework, Unity, ROS2, LiDAR sensors, rain sim-
ulation, perception systems, environmental conditions, autonomous robotics.

Abstract

This project aims to develop a realistic simulation environment using Unity and
ROS2 for evaluating SLAM algorithms in autonomous vehicles. The simulation in-
corporates sensors such as LiDAR and IMU, as well as adverse environmental
conditions, like rain, to assess the robustness of perception and navigation sys-
tems. Specific scenarios emulating complex and dynamic environments, such
as urban canals, were designed to enable comprehensive testing of autonomous
systems in controlled conditions.

The results include a rain simulation model that introduces noise and attenua-
tion in LiDAR measurements, enhancing the validation of perception algorithms.
This simulation framework not only enables the evaluation of the accuracy and
reliability of SLAM systems but also provides synthetic data to improve these al-
gorithms, contributing to the development of more robust autonomous systems
prepared for real-world environments.

v

Acronyms

ADAS Autonomous Driving Assisted Systems

AMCW Amplitude Modulated Continuous Wave

API Application Programming Interface

APDs Avalanche Photodiodes

AR Augmented Reality

ASCII American Standard Code for Information Interchange

AURORA Aquatic Unique Research and Operating platform for Radio
Applications

BGN Bayesian Graph Network

CAD Computer-Aided Design

CP Closest Point

DDS Data Distribution Service

DLR German Aerospace Center

DR Detection Rate

DT Detection Threshold

EKF Extended Kalman Filter

EU European Union

FFT Fast Fourier Transform

FDR False Detection Rate

FMCW Frequency Modulated Continuous Wave

FOV Field of View

FPA First Peak Averaging

vii

viii Acronyms

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPS Global Positioning System

HDRP High Definition Render Pipeline

IMU Inertial Measurement Unit

IWT Inland Waterway Transport

KITTI Karlsruhe Institute for Technology and Toyota Dataset

KPIs Key Performance Indicators

LAS LASer File Format

LAZ Compressed LAS File Format

LiDAR Light Detection and Ranging

MAPE Mean Absolute Percentage Error

MB Megabyte

ML Machine Learning

MSS Multi-Sensor Systems

NIR Near-Infrared

OOI Object of Interest

PCD Point Cloud Data

PCL Point Cloud Library

PLY Polygon File Format

PNT Position, Navigation and Timing

PPP Precise Point Positioning

QGIS Quantum Geographic Information System

RADAR Radio Detection and Ranging

RAM Random Access Memory

RE Returned Energy

RGB Red Green Blue

Acronyms ix

RIO Returned Intensity of Object

RIRD Returned Intensity of RainDrop

RMSE Root Mean Square Error

ROS Robot Operating System

ROS 2 Robot Operating System 2

ROSSharp ROS for Unity Framework

RTK Real-Time Kinematics

RViz ROS Visualization

SLAM Simultaneous Localization and Mapping

SNR Signal-to-Noise Ratio

SONAR Sound Navigation and Ranging

SSIM Structural Similarity Index Measure

TCP Transmission Control Protocol

TFG Final Degree Work

TFM Master’s Final Project

UMA University of Malaga

URDF Unified Robot Description Format

URP Universal Render Pipeline

VLP Velodyne LiDAR Puck

VR Virtual Reality

VRS Virtual Rain Simulator

XR Extended Reality

Contents

Resumen iii

Abstract v

Acronyms vii

I Introduction 1

1 Introduction and Overview 3

1.1 Introduction . 3

1.2 Summary of Contributions . 5

1.2.1 Organization of the Thesis 6

2 Theoretical Background 7

2.1 LiDAR Technology . 8

2.1.1 Distance measurement methods 8

2.1.2 Intensity in LiDAR systems 11

2.1.3 Data representation . 12

2.1.4 Error sources . 16

2.1.5 LiDAR simulations techniques 20

2.2 Rain Simulation Techniques . 23

2.2.1 Phyisical models of rain . 24

2.2.2 Rain-induced attenuation on LiDAR signals 26

xi

xii Acronyms

II Project development 31

3 Experimental Setup 33

3.1 ROS 2 Overview . 36

3.1.1 Communication protocol . 36

3.2 Unity Engine Overview . 37

3.2.1 Key features and advantages of using Unity in this project . 40

3.3 Simulation Setup . 42

3.3.1 Integrating ROS 2 and Unity for simulation 42

3.3.2 Components of the simulation framework 44

3.3.3 Sensor integration . 54

3.4 Introducing The Rain Simulation Model 63

3.4.1 Model structure . 65

3.4.2 Detailed technical justification 66

3.4.3 Model assumptions . 72

3.4.4 Validation model . 74

4 Experiments and results 75

4.1 Initial Tests and Validation . 76

4.1.1 Simulation setup . 76

4.1.2 Qualitative results . 77

4.1.3 Quantitative metrics based on raindrops hit distribution . . . 83

4.1.4 Publication rate analysis . 85

4.2 Overall Results of the proyect . 87

4.3 Validation against Real-World Data 87

4.4 Summary of Project Results and Conclussion 87

III Conclusions and Future Work 91

5 Conclusions 93

5.1 Limitations and Future Work . 95

Acronyms xiii

IV Appendix 97

A Configuration and parameters of the simulation tool 99

A.1 World settings . 100

A.1.1 Directional light configuration 100

A.1.2 HDRP asset configuration 101

A.1.3 Ocean settings (general) 102

A.1.4 Ocean settings (deformation and appearance) 103

A.1.5 Ocean settings (foam and miscellaneous) 104

A.1.6 Ocean volume configuration 105

A.1.7 Map settings . 106

A.1.8 Hierarchy overview . 107

A.1.9 AURORA configuration . 108

A.1.10 Propulsion system configuration 109

A.1.11 IMU configuration . 111

A.1.12 LiDAR configuration (Velodyne VLP-16) 112

A.2 Performance Information . 115

B Rain Model Validation Campaign 117

B.1 Introduction . 117

B.2 Review of Validation Methods for Rain Simulation Models 118

B.2.1 Validation approaches in the literature 118

B.3 Validation Methodology . 119

B.3.1 Validation setup . 120

B.3.2 Data acquisition system . 121

B.3.3 Data collection . 123

B.4 Validation Metrics . 125

B.4.1 Comparison and analysis 127

Bibliography 134

List of Figures

2.1 Example of LiDAR output illustrating intensity-based grading. . . . 8

2.2 Time of Flight Working Principle. This diagram illustrates the op-
erating mechanism of a ToF system, where a pulsed laser emits
light towards a target. The reflected light is captured by optics, and
the time taken for the light to travel to the target and back is mea-
sured using a timer. The system includes a receptor with start and
stop signals that enable precise timing calculations, which are then
used to compute the distance to the target. 9

2.3 AMCW Working Principle. A source emits a modulated wave to-
wards a target, and the reflected wave is captured by a detector.
The phase shift between the emitted and received signals is mea-
sured using a phase meter. This phase difference is proportional to
the distance traveled by the wave, allowing the system to calculate
the target’s distance with high precision. 10

2.4 FMCW Working Principle. A chirped laser generates a modulated
signal that is split and directed toward the scene using a circulator.
The reflected signal (Rx) from the target is combined with the refer-
ence signal (Lo) and processed by a detector and digitalizer. The
frequency difference between the transmitted (Tx) and received
(Rx) signals, calculated through Fast Fourier Transform (FFT), is
proportional to the distance (D) of the target. The equation high-
lights the relationship between distance, the speed of light (c), and
the bandwidth of the chirped signal (B). FMCW systems are par-
ticularly advantageous in automotive LiDAR and radar applications
for their ability to simultaneously measure range and velocity with
high resolution. 11

2.5 Laser illumination and return signal recording. Portions of the emit-
ted laser pulse are reflected by different targets resulting in multiple
return signals for each pulse. Different lidar systems have different
return signal recording capabilities [1, 2]. 17

2.6 Principle of occlusion [2]. 19

2.7 Illustration of scattering, backscattering, and extinction. 27

xv

xvi Acronyms

3.1 Flow chart representing the architecture of the project and its data
flow. At the top, the Unity Engine acts as the central simulation en-
vironment. Within it, the scenario is defined, comprising 3D mod-
els, a map, and a water system, which collectively simulate realis-
tic environmental conditions. The AURORA vessel operates within
this environment, equipped with sensors that generate raw LiDAR
data. This data is transmitted as an ROS 2 topic to the Rain Simu-
lation Model. The Rain Simulation Model processes the raw LiDAR
data, introducing rain-induced noise and effects. The modified data
is then transmitted as another ROS 2 topic, enabling further anal-
ysis of LiDAR performance under simulated rain conditions. This
chart visually encapsulates the interactions and components within
the project framework. 35

3.2 ROS 2 communication flow [3]. 37

3.3 Hierarchy of a Unity game object and its components, including
transform, rigid body, colliders, mesh render, and scripts. (Source [4]). 38

3.4 High-fidelity simulation environment 42

3.5 Westhafen Satellite Image (a), Westhafen Map on Unity (b) 45

3.6 An extracted building model from the Westhafen map. 46

3.7 Additional test scenes developed for sensor validation and frame-
work evaluation. (a) LiDAR accuracy test scene with structured ob-
jects and distinct characteristics to assess sensor performance. (b)
Sixteen-cylinder scene designed to isolate and evaluate the perfor-
mance of the Velodyne VLP-16 LiDAR sensor. 47

3.8 Visualization of the HDRP water system in Unity [5]: (a) rendered
ocean surface and (b) water mesh geometry. 49

3.9 The AURORA vessel traveling along the Berlin urban canals . . . 51

3.10 3D model of the AURORA vessel integrated into Unity. 52

3.11 Grid and mesh representations of the AURORA vessel used in the
simulation framework. 53

3.12 IMU and LiDAR sensors integrated into Unity. The sensors are
positioned relative to the AURORA vessel’s structure, ensuring ac-
curate alignment with the ship’s coordinate system. Their place-
ment is designed to be easily adjustable, allowing for repositioning
to different locations on the vessel. This flexibility enables testing
various configurations and scenarios, enhancing the versatility of
the simulation environment. 55

3.13 3D model of the IMU sensor integrated into Unity. 56

3.14 3D model of the Velodyne LiDAR sensor integrated into Unity. . . . 58

Acronyms xvii

3.15 Point cloud data generated by the LiDAR sensor, visualized in RViz,
captured in an open water environment. This visualization demon-
strates the sensor’s ability to map unobstructed surroundings. . . . 58

3.16 Point cloud data generated by the LiDAR sensor, visualized in RViz,
captured under a bridge. This visualization highlights the detailed
mapping of complex structures and the simulation’s environmental
mapping capabilities. 59

3.17 Various grayscale textures used in the simulation for representing
different surface properties [6]. 62

3.18 Graphical representation of LiDAR return classification. 65

3.19 Theoretical Model of Absorption and Scattering Effects. 70

3.20 Laser intensity vs distance under different rain conditions. Data
obtained from the rain simulation model. 71

4.1 LiDAR sensor configuration showing details of the Velodyne VLP16
parameters in the simulation. a)Sensor model, b) Noise addition,
c) Resolution parameters, d) Divergence, e) Range settings. 77

4.2 Test scene visualized in Foxglove Studio [7] with no rain. The in-
tensity gradient ranges from 0 (red) to 255 (green), highlighting the
variation in LiDAR return intensities. 78

4.3 Rain Rate: 5-25 mm/h. 79

4.4 Rain Rate: 25-50 mm/h. 80

4.5 Rain Rate: 50-75 mm/h. 81

4.6 Rain Rate: 75-100 mm/h. 82

4.7 Number of raindrops in the LiDAR beam path distribution across a
full sweep of RR from 5 to 100 mm/h. The x-axis represents the
number of raindrops that intersect a single laser beam, while the
y-axis indicates the total count of laser beams experiencing that
specific number of raindrop interactions. 83

4.8 Raindrop hit distribution for Rain Rate (RR) in the range of 5-25
mm/h. 84

4.9 Raindrop hit distribution for Rain Rate (RR) in the range of 25-50
mm/h. 84

4.10 Raindrop hit distribution for Rain Rate (RR) in the range of 50-75
mm/h. 85

xviii Acronyms

4.11 Flowchart illustrating the real-time testing process, including the
Unity environment, Velodyne VLP-16 LiDAR, ROS 2 framework,
and the rain simulation model. The system bridges Unity and ROS
2 to evaluate pointcloud publication rates under simulated rain con-
ditions. 85

4.12 Visualization of the LiDAR points during a simulated scene in Unity,
showing the interaction between the laser beams and the environ-
ment. 88

4.13 Point cloud published on the /VLP16/velodyne_points topic with-
out applying the rain model, showcasing the LiDAR’s original out-
put in a simulated environment. 88

4.14 Point cloud published on the /noisy_lidar_pointcloud topic af-
ter applying the rain model to the /VLP16/velodyne_points data,
demonstrating the simulated rain effects on LiDAR perception. . . 89

A.1 Configuration of the directional light in the simulation environment. 100

A.2 HDRP asset configuration for rendering settings. 101

A.3 General settings for the ocean surface in the simulation. 102

A.4 Deformation and appearance settings for the ocean in the simulation.103

A.5 Foam and miscellaneous settings for the ocean in the simulation. . 104

A.6 Ocean volume profile configuration for environmental effects. . . . 105

A.7 General Westhafen map configuration and material settings in the
simulation. 106

A.8 Detailed hierarchy of components in the AURORA simulation envi-
ronment. 107

A.9 Configuration of the Ground Truth publisher in the AURORA envi-
ronment. 108

A.10 Propulsion system settings for the AURORA vessel. 109

A.11 ROS-based propulsion configuration in the simulation. 110

A.12 Configuration of the IMU sensor and ROS 2 publisher. 111

A.13 General configuration of the Velodyne VLP-16 LiDAR sensor. . . . 112

A.14 ROS 2 publisher and visualization settings for the Velodyne VLP-16. 113

A.15 Detailed material and rendering settings for the Velodyne VLP-16
model. 114

A.16 Publishing rate of the Velodyne 16 simulated in Unity. 115

A.17 Publishing rate of the Velodyne 16 rainy points after applying the
Rain Model. 115

List of Figures xix

B.1 Schematic of the experimental setup showing the placement of the
Ouster OS0-128 sensor, interface box, dry box, and connections to
the measurement room, including the power supply and Ethernet
cabling. 122

B.2 Configuration and positioning of the Ouster sensor for the valida-
tion campaign. 124

List of Tables

2.1 Rain drop size distribution and parameters according to Marshall-
Palmer . 24

2.2 Comparison of different rain drop size distributions 26

2.3 Comparison of Rayleigh Scattering and Mie Theory 28

3.1 Comparison of Simulation Platforms for Robotics 42

3.2 Attenuation Coefficients for Different Rainfall Rates 69

4.1 Publishing rate of the Velodyne 16 ROS 2 topic simulated in Unity
and published without modifications. For detailed terminal output,
refer to Appendix A.16. 86

4.2 Publishing rate of the Velodyne 16 rainy points after applying the
Rain Model. For detailed data, refer to Appendix A.17. 87

B.1 Specifications of the Ouster OS0 LiDAR Sensor 120

xxi

Part I

Introduction

1

Chapter 1

Introduction and Overview

Contents
1.1 Introduction . 3

1.2 Summary of Contributions . 5

1.2.1 Organization of the Thesis 6

1.1 Introduction

This bachelor thesis focuses on developing a rain simulation pipeline specifically
designed for LiDAR scans, aiming to create a greater variety of situational sam-
ples that can be used to evaluate intelligent transportation systems. The pipeline
integrates a Unity-based simulator for generating realistic LiDAR data with a C++
framework that introduces rain-induced noise into the scans. By enhancing the
Unity simulator and incorporating rain as an additional source of environmental
variability, the system enables more comprehensive testing of SLAM and per-
ception algorithms. The pipeline’s functionality is validated in both simulated and
real-world scenarios, contributing to the advancement of robust autonomous tech-
nologies.

Beyond improving the robustness of perception and navigation algorithms, ad-
vancements in autonomous systems bring broader societal benefits. Automation
enhances traffic efficiency, reduces emissions, and improves accessibility for in-
dividuals with mobility challenges. However, as autonomous systems continue
to evolve, ensuring their reliability in diverse and dynamic environments remains
a critical research focus. This work contributes to this overarching goal by ad-
dressing specific challenges related to perception and navigation under adverse
environmental conditions.

An essential element in enabling autonomous systems to operate effectively
in such environments is their capacity to perceive and navigate with precision.
SLAM is a key technology in this regard. SLAM enables autonomous systems

3

4 Chapter 1. Introduction and Overview

to construct and update maps of their surroundings while simultaneously deter-
mining their position within them. This capability is particularly vital in scenarios
where GPS signals are unavailable or unreliable, such as indoor environments or
areas with dense foliage.

For SLAM algorithms to be effective, they must demonstrate robustness against
diverse and challenging real-world conditions, including dynamic obstacles, chang-
ing lighting, and adverse weather. Among these environmental challenges, weather
conditions such as rain and fog pose significant difficulties for autonomous sys-
tems, necessitating the development of algorithms that can perform reliably under
such circumstances. Advances in simulation environments are essential to sys-
tematically study and address these challenges.

In parallel with algorithmic developments, recent decades have witnessed sig-
nificant progress in sensor technology. Innovations such as mass-market LiDAR,
MIMO RADAR, and event cameras have revolutionized the capabilities of au-
tonomous systems [8, 9, 10].

LiDAR, in particular, has emerged as a cornerstone technology for autonomous
systems. Its ability to generate high-resolution 3D maps of the environment sur-
passes that of visual or radar technologies, especially under conditions of low
visibility, such as fog or rain [11]. However, the sensitivity of LiDAR to environ-
mental factors underscores the necessity for robust evaluation frameworks.

Integrating these sensors into perception systems also presents challenges,
including data fusion, computational costs, and environmental sensitivity. Ad-
dressing these challenges is critical to fully leveraging the potential of advanced
sensors in autonomous systems.

Despite these advancements, the evaluation of autonomous systems, partic-
ularly in the context of SLAM, continues to face significant hurdles. While SLAM
methods have achieved remarkable advancements, their evaluation often lacks
the rigor needed for widespread deployment in real-world scenarios. Real-world
testing, though invaluable, is limited by its inability to cover the full range of envi-
ronmental conditions, particularly those involving adverse weather. For example,
rain can introduce significant noise in LiDAR data, leading to errors in mapping
and localization [12]. Additionally, relying solely on real-world testing is both time-
consuming and resource-intensive, making it impractical for exhaustive evalua-
tions. This limitation poses a significant challenge for researchers and industry
stakeholders seeking to validate the robustness of SLAM algorithms under vary-
ing and extreme conditions. The lack of proper evaluation frameworks not only
slows down innovation but also hinders the trust required for mass-market adop-
tion of autonomous transport technologies.

To address this gap, simulation has emerged as a critical tool. By enabling
controlled and repeatable testing environments, simulations provide the flexibility
to evaluate SLAM methods under diverse scenarios, including those involving
weather-related challenges.

1.2. Summary of Contributions 5

A robust evaluation framework for SLAM systems must account for the inher-
ent variability of real-world conditions. Monte Carlo simulation [13] provides an
effective solution by generating a wide range of scenarios to test SLAM algorithms
exhaustively. This statistical approach ensures that the system’s performance is
evaluated across a diverse set of conditions, offering insights into its reliability and
robustness [14].

In response to these needs, this thesis aims at developping a rain model sim-
ulator for LiDAR scans. Rain introduces unique challenges for LiDAR sensors,
such as signal attenuation, noise, and false detections [15]. Accurately modeling
these effects in a controlled environment is essential for improving SLAM systems
and ensuring their reliability in real-world scenarios.

The rain model simulator integrated with the simulation framework, enables
exhaustive testing of SLAM methods under varying rainy conditions. By emulating
the interactions between LiDAR signals and rain particles, this simulator provides
valuable insights into the limitations and capabilities of current SLAM technolo-
gies. Furthermore, the generated datasets serve as a benchmark for developing
and validating new SLAM algorithms tailored to adverse weather conditions.

This work contributes to the broader goal of creating robust evaluation frame-
works for autonomous systems, bridging the gap between theoretical research
and practical deployment.

1.2 Summary of Contributions

This thesis contributes to the advancement of LiDAR-based autonomous systems
through the development of a realistic simulation environment and a rain simula-
tion model. The work was structured around the following objectives:

1. Create a simulation environment in Unity: Design and implement a high-
fidelity virtual framework to simulate realistic navigation scenarios.

2. Integrate models and sensors, and configure scripts: Ensure the cor-
rect setup of sensor models (LiDAR, IMU) and implement the necessary
scripts for seamless operation.

3. Validate Unity-ROS 2 communication for sensor data transmission:
Confirm the accurate transmission of data from Unity to ROS 2 for sensors
like IMU and LiDAR.

4. Develop a rain simulation model for LiDAR: Simulate the effects of rain
on LiDAR measurements, including noise, signal attenuation, and distortion,
in a controlled virtual environment.

5. Validate the environment and rain model: Confirm the correct functional-
ity of the simulation environment and assess the reliability of the rain model

6 Chapter 1. Introduction and Overview

through testing.

1.2.1 Organization of the Thesis

The work presented in this thesis was conducted over a period of 6 months,
divided into three main parts.

Part I: Introduction
The chapters included in this part are:

• Chapter 1: Introduction and Objectives – Introduces the problem, ex-
plains the importance of the study, and defines the main objectives and
structure of the thesis.

• Chapter 2: Theoretical Background – Reviews the theoretical founda-
tions, including LiDAR technology, SLAM algorithms, and weather simula-
tion techniques.

Part II: Project Development
This part describes the work carried out during the project. It is divided into three
main chapters:

• Chapter 3: Simulation Framework Development – Details the creation
of a high-fidelity simulation environment, the integration of sensors, and the
implementation of a rain simulation model.

• Chapter 4: Results and Analysis – Presents the experimental results,
evaluating the performance of the rain model and its impact on LiDAR data.

Part III: Conclusions and Future Work
The final part summarizes the key contributions and findings of the thesis, re-
flects on its limitations, and proposes directions for future research. The chapters
included in this part are:

• Chapter 5: Conclusions and Future Work – Consolidates the outcomes
of the study and suggests possible improvements and extensions for future
research.

Appendices
The appendices provide additional information and supplementary materials rel-
evant to the thesis. Among these, Appendix B is of particular importance, as it
discusses the validation methodology for the rain model. While this methodology
is still in the process of being completed, it lays the groundwork for evaluating the
robustness and accuracy of the proposed system. The appendix includes prelim-
inary insights and outlines the steps required to finalize the validation process.

Chapter 2

Theoretical Background

Contents
2.1 LiDAR Technology . 8

2.1.1 Distance measurement methods 8

2.1.2 Intensity in LiDAR systems 11

2.1.3 Data representation . 12

2.1.4 Error sources . 16

2.1.5 LiDAR simulations techniques 20

2.2 Rain Simulation Techniques . 23

2.2.1 Phyisical models of rain 24

2.2.2 Rain-induced attenuation on LiDAR signals 26

This chapter provides the necessary theoretical foundation to understand the
concepts and technologies underpinning this thesis. It begins with an exploration
of LiDAR technology, covering its operational principles, data representation, and
common error models. The chapter then delves into LiDAR simulation tech-
niques, presenting current methods for simulating sensor measurements, such
as ray casting and machine learning-based approaches.

Furthermore, this chapter addresses rain simulation techniques, including
physical models of rain, raindrop distributions, and their impact on LiDAR signals,
particularly in terms of attenuation and noise.

By laying out this theoretical background, the chapter establishes the context
and key principles that support the design, implementation, and validation of the
simulation environment developed in this thesis.

7

8 Chapter 2. Theoretical Background

2.1 LiDAR Technology

LiDAR technology consists in sending a laser beam to the target and measuring
the reflected light with a photodetector to determine the distance to the target and
in this way generating a precise map of the surrounding environment. The main
advantages of LiDAR are that it can provide a precise position over large areas
and that it is fast, making it possible to collect information with a speed and a
degree of detail that would not otherwise be possible.

Figure 2.1: Example of LiDAR output illustrating intensity-based grading.

2.1.1 Distance measurement methods

LiDAR operates by emitting laser pulses and measuring the time it takes for them
to return after reflecting off an object or surface. This process calculates dis-
tances, forming the basis for point cloud generation. While position and orienta-
tion of the LiDAR sensor can be useful for aligning scans in broader applications,
the core operation of the sensor itself focuses on the distance to an object or
surface, which can be determined using various measurement techniques.

One common method for distance measurement with LiDAR involves the use
of a pulsed laser to determine the time of flight (ToF) [16] (see Figure 2.2). This
refers to the time it takes for the emitted light to travel to a surface, reflect back,
and return to the sensor. The distance can be calculated using the following

2.1. LiDAR Technology 9

equation:

D =
c ·∆T

2
(2.1)

where D is the distance to the target, c is the speed of light, and ∆T represents
the measured time of flight.

This method is highly effective but relies on receiving a detectable return sig-
nal. For long-range measurements, high-powered lasers are required to ensure
sufficient signal strength upon reflection.

Pulsed
laser

Timer

DISTANCE

Receptor
Start

Receptor
Stop

Target

Optics

Figure 2.2: Time of Flight Working Principle. This diagram illustrates the operating
mechanism of a ToF system, where a pulsed laser emits light towards a target.
The reflected light is captured by optics, and the time taken for the light to travel
to the target and back is measured using a timer. The system includes a receptor
with start and stop signals that enable precise timing calculations, which are then
used to compute the distance to the target.

Another method for calculating distances relies on measuring the phase shift.
In this case, an amplitude-modulated continuous waveform (AMCW) laser is used
[17] (see Figure 2.3). An AMCW laser emits light modulated at a specific fre-
quency, often with a sinusoidal variation in intensity, though other modulation pat-
terns, such as square or triangular waves, may also be used. The distance is
determined by analyzing the phase difference between the emitted light and the
light reflected back from the target. This phase difference corresponds to the time
it takes for the light to travel to the target and back, which can be directly related
to the distance.

10 Chapter 2. Theoretical Background

D =
c

2
·
∆Φ

2πfM
(2.2)

where D and c are the distance to the object and the speed of light, respec-
tively; ∆Φ is the phase shift, and fM is the modulation frequency of the signal
amplitude.

The main drawback of this method is that the maximum measurable range
without ambiguity is relatively short, typically limited to around 100 meters. This
limitation occurs because the maximum measurable distance is tied to the wave-
length of the modulation frequency (λm = c/fM). When the phase shift exceeds
2π, the waves align again and become indistinguishable from their earlier posi-
tions, making it impossible for the system to detect how many full cycles have
occurred. This results in ambiguity for longer distances.

Increasing the modulation frequency improves measurement precision but
shortens the range at which distances can be measured without confusion. As a
result, this method is best suited for short- to medium-range applications requiring
high accuracy.

Target

Source

Detector
Phase
Meter

DISTANCE

Figure 2.3: AMCW Working Principle. A source emits a modulated wave towards
a target, and the reflected wave is captured by a detector. The phase shift be-
tween the emitted and received signals is measured using a phase meter. This
phase difference is proportional to the distance traveled by the wave, allowing the
system to calculate the target’s distance with high precision.

A third method for calculating distances is the Frequency Modulated Continu-
ous Wave (FMCW) (Frequency Modulated Continuous Wave) technique [18] (see
Figure 2.4). In this method, the instantaneous optical frequency of the emitted
signal is periodically varied over time, typically by modulating the power supplied
to the source. This frequency modulation causes a frequency shift between the
emitted signal and the signal reflected back from the target. By analyzing the
frequency difference (beat frequency) between these two signals, it is possible to
determine the time delay and thus calculate the distance to the target.

2.1. LiDAR Technology 11

Unlike amplitude-based methods, such as AMCW, the FMCW technique offers
higher precision due to its ability to resolve small frequency differences with high
accuracy. While the typical depth resolution for AMCW and phase-shift methods
is around 1 cm, FMCW can achieve a much finer resolution of approximately 0.1
cm, making it particularly suitable for applications requiring high accuracy, such
as autonomous vehicles and industrial metrology.

Chirped
Laser

Detector
+

Digitalizer

Splitter

Tx

Lo Combiner

Circulator

Rx

Tx

Rx

Scene

Fast Fourier Transform

Relative
Power

Range

Figure 2.4: FMCW Working Principle. A chirped laser generates a modulated
signal that is split and directed toward the scene using a circulator. The reflected
signal (Rx) from the target is combined with the reference signal (Lo) and pro-
cessed by a detector and digitalizer. The frequency difference between the trans-
mitted (Tx) and received (Rx) signals, calculated through Fast Fourier Transform
(FFT), is proportional to the distance (D) of the target. The equation highlights
the relationship between distance, the speed of light (c), and the bandwidth of the
chirped signal (B). FMCW systems are particularly advantageous in automotive
LiDAR and radar applications for their ability to simultaneously measure range
and velocity with high resolution.

2.1.2 Intensity in LiDAR systems

LiDAR systems provide not only spatial coordinates (x, y, z) but also record addi-
tional attributes such as the intensity of the reflected laser pulses. This parameter
plays a critical role in interpreting the environment captured by the sensor.

Intensity refers to the strength of the return signal and is directly measured
by the LiDAR’s receiver, typically using photodetectors or avalanche photodiodes
(APDs). Photodetectors are devices designed to convert light into electrical sig-
nals and form the core of LiDAR’s intensity measurement system. They detect the
return pulse from the target and translate its energy into an electrical response,
which is then processed by the LiDAR’s electronics.

12 Chapter 2. Theoretical Background

Among photodetectors, APDs are a highly sensitive type of photodiode widely
used in LiDAR systems due to their ability to amplify weak return signals. Photodi-
odes, in general, are semiconductor devices that generate a current proportional
to the intensity of incident light. APDs take this a step further by incorporating an
internal gain mechanism.

This high sensitivity makes APDs ideal for LiDAR applications, as they can
detect faint signals even from distant or low-reflectivity surfaces. However, their
performance can be affected by noise, temperature variations, and the quality of
the optical components in the system. To address this, modern LiDAR systems
combine APDs with advanced signal processing algorithms and noise reduction
techniques to ensure accurate intensity measurements.

The recorded intensity is influenced by several factors, including:

• Material properties: Reflective surfaces produce stronger signals, while
absorptive materials result in weaker returns.

• Angle of incidence: The signal is reduced when the laser beam strikes the
surface at oblique angles.

• Distance to the target: Intensity decreases with distance due to signal
dispersion and atmospheric attenuation.

• Environmental conditions: Factors such as fog, rain, or dust attenuate the
signal strength.

In practice, LiDAR sensors measure the return signal’s strength in real time
without explicitly calculating these factors. Instead, the intensity values reflect
the combined effect of these influences. This makes intensity a valuable attribute
for interpreting material properties and assessing environmental conditions indi-
rectly.

Having outlined how real LiDAR systems measure the received intensity, we
will later delve into the detailed computation of LiDAR performance in simulation
environments.

2.1.3 Data representation

While previous sections discussed the principles of LiDAR operation and its ap-
plications in mapping, this section focuses on the structuring and representation
of the raw data generated during LiDAR scans, critical for enabling further appli-
cations.

2.1.3.1 Key components of LiDAR data

LiDAR systems produce rich datasets that capture detailed spatial and environ-
mental information about the surroundings. These datasets, commonly referred

2.1. LiDAR Technology 13

to as point clouds, consist of multiple attributes that form the foundation for further
analysis and processing. The key components of LiDAR data include:

• Spatial Coordinates (x, y, z): Each point in the LiDAR point cloud is rep-
resented by three spatial coordinates x, y, and z that define its 3D position
in space. These coordinates describe the physical surfaces detected by the
LiDAR sensor and form the geometric foundation of the dataset.

• Intensity: The intensity value represents the strength of the returned laser
signal. This parameter is influenced by several factors, including the reflec-
tivity of the target material, the angle at which the laser strikes the surface,
and environmental conditions such as rain or fog.

• Timestamps: Timestamps provide a precise temporal context for each
measurement in the dataset, serving as another key piece of information
provided by LiDAR systems. These timestamps are generated using ei-
ther the LiDAR’s internal clock or by synchronizing with an external time
reference, such as a GNSS (Global Navigation Satellite System) receiver.
Accurate time-stamping is critical for ensuring synchronization with other
sensor inputs, such as cameras or IMUs, particularly in dynamic environ-
ments where both the sensor and objects in the scene may be in motion.

These components form the raw output of LiDAR systems and are typically
stored in formats that facilitate analysis and processing, such as LAS, PCD, or
custom binary formats. These formats, along with their roles in data storage and
processing, will be discussed in the following sections. Understanding these key
attributes is essential for interpreting and utilizing LiDAR data effectively.

2.1.3.2 Data structuring formats

• PCD (Point Cloud Data) The .pcd format is a widely used file type for
storing point clouds, commonly utilized in the PCL framework. It supports
both ASCII and binary encoding, offering flexibility for human-readable and
efficient data storage. Each point includes at least the fields x, y, z (spatial
coordinates), and optionally additional attributes such as intensity or RGB
values for color representation. For further details on the .pcd format, see
[19].

– Data Type: LiDAR point cloud data is typically stored using 32-bit float
values (4 bytes per value) for each x, y, z coordinate. For a dataset con-
taining 1 million points with just x, y, z values, the storage requirement
is approximately 12 MB. When additional attributes, such as intensity
or color, are included, the size increases proportionally (e.g., 16 MB
for x, y, z, i). Binary encoding is commonly used, as it reduces storage
overhead while maintaining precision, making it ideal for large-scale
datasets in real-time applications.

14 Chapter 2. Theoretical Background

– Use Case: The PCD format is frequently used in autonomous driv-
ing systems to represent 3D environments in real time. For example,
a LiDAR sensor mounted on a vehicle captures point cloud data that
is processed to identify pedestrians, vehicles, and static objects like
buildings or traffic signs. This format plays a crucial role in collision
avoidance systems and SLAM, where precise and efficient data pro-
cessing is required for safe navigation.

– Note: To minimize numerical rounding errors and optimize storage,
point cloud data is often stored with offset positions relative to the ve-
hicle’s initial frame. This approach compresses the range of values,
reduces file size, and facilitates efficient data transmission. Such prac-
tices are particularly valuable in applications requiring frequent data
exchanges, such as vehicle-to-vehicle (V2V) or vehicle-to-cloud (V2C)
communication, enabling real-time updates for fleet coordination and
map sharing.

• Binary XYZI/XYZIR These binary formats, commonly used in datasets like
KITTI and nuScenes [20, 21], lack headers and use fixed fields: x, y, z,
intensity, and optionally ring index. They are optimized for compact
storage and fast sequential read operations, making them ideal for real-time
applications.

– Data Type: 32-bit float (4 bytes per field). Each point consumes a fixed
amount of memory, e.g., 16 bytes for XYZI or 20 bytes for XYZIR. For 1
million points, this results in 16 MB or 20 MB of storage.

– Use Case: Standard format for autonomous driving datasets [22]. Com-
monly used in real-time perception pipelines where minimal overhead
and high read/write speeds are critical. For instance, it is used in colli-
sion avoidance systems where the rapid ingestion of large point clouds
is required.

– Note: Due to its compact binary structure, it avoids the overhead of
human-readable formats, making it more efficient for storage and trans-
mission in bandwidth-constrained systems like V2V or V2X communi-
cation. As a headerless format, portability depends on well-documented
metadata describing the structure (e.g., number of points, fields). This
makes it less self-contained but highly interoperable with established
libraries such as Open3D or PCL.

• PLY (Stanford Triangle Format) The .ply format encodes points as ver-
tices and supports both ASCII and binary representations. Optional fields,
such as color and intensity, add flexibility. This makes it ideal for visual-
ization and data interchange between applications [23].

– Required Properties: x, y, z. Optionally red, green, blue [0–255],
intensity.

2.1. LiDAR Technology 15

– Use Case: Suitable for visualization in tools like and Blender [6]. Also
used in cases where human-readability or data annotation is neces-
sary.

– Note: ASCII encoding is verbose, leading to larger file sizes, but is
useful for manual inspection and debugging. Binary encoding signifi-
cantly reduces size and read/write times, making it suitable for larger
datasets. Widely supported by many visualization and processing tools,
ensuring high portability. However, ASCII files are less efficient for stor-
age and transmission in high-volume datasets.

• LAS (LASer File Format) The .las format is designed for large-scale point
clouds and supports RGB color fields and intensity values. It is a widely
adopted standard in geospatial applications due to its ability to handle large-
scale mapping data [24].

– Recommended for: Large-scale mapping datasets, particularly in forestry,
urban planning, and topographic surveys.

– Version: LAS 1.4 (uncompressed only). Extensions like LAZ allow for
compressed versions, reducing file size by up to 70% while maintaining
compatibility.

– Scale/Resolution: Supports customizable scales (e.g., 10−6) to mini-
mize discretization errors, making it highly precise for geographic datasets.

– Use Case: Commonly used in applications requiring integration with
GIS platforms such as ArcGIS and QGIS. For example, LiDAR point
clouds collected for terrain modeling are processed in .las format and
tiled for efficient analysis.

– Note: Although LAS files can be large, tiling is a common strategy
to partition large datasets into manageable chunks for processing and
storage. Its widespread adoption as a standard ensures high portability
across GIS tools and LiDAR-specific software.

• Gaussian Splat (.splat) The Gaussian Splat format allows encoding of
points as Gaussian distributions, enabling more visually appealing render-
ings and smoother surface approximations compared to discrete points [25,
26].

– Use Case: Primarily used for visualization in applications where sur-
face rendering is important, such as in augmented reality or high-fidelity
visualizations of 3D reconstructions.

– Tools: Conversion from standard formats (e.g., .ply to .splat) can
be done using tools like SuperSplat, which enable advanced rendering
techniques such as per-point normals and variable radius splats.

16 Chapter 2. Theoretical Background

– Note: Compared to discrete point formats, splat-based representa-
tions can reduce the number of points needed for smooth visual ap-
proximations, thereby saving storage and improving rendering perfor-
mance. While less common than formats like .ply or .las, it is gaining
traction in specific domains. However, it may require conversion tools
to interoperate with standard point cloud libraries.

2.1.4 Error sources

Although LiDAR systems provide highly accurate and dense spatial data, vari-
ous error sources can degrade the quality and reliability of the measurements.
These errors are typically caused by environmental factors, sensor limitations,
and physical phenomena. Identifying and understanding these causes is essen-
tial to improve the robustness of LiDAR-based systems, particularly in challenging
conditions.

Temperature sensitivity Temperature fluctuations can impact the performance
of LiDAR sensors, particularly their internal electronics and optics [27].

• Cause: Variations in ambient temperature affecting laser diodes, photode-
tectors, and calibration.

• Impact: Causes drift in measurements, reduced accuracy, and changes in
range estimation.

• Mitigation: Temperature compensation mechanisms and periodic recali-
bration.

Multiple returns Multiple returns occur when a single laser pulse encounters
multiple surfaces along its path before returning to the sensor [28, 29].

• Cause: Highly reflective materials, such as mirrors, polished metals, or
transparent surfaces like glass, can significantly distort LiDAR measure-
ments. When a laser pulse interacts with these materials, it may reflect
at unexpected angles, pass through without returning, or partially reflect at
varying depths [30]. This behavior introduces challenges such as the loss
of the laser signal, incorrect distance measurements, or the generation of
false points in the point cloud. For example, polished metals can cause
specular reflections that deflect the beam away from the sensor, while glass
may produce multiple weak returns due to partial internal reflections.

Reflective surfaces can also saturate the photodetectors within the LiDAR
sensor, reducing the system’s dynamic range and introducing nonlineari-
ties that degrade measurement accuracy. Furthermore, refractive materi-
als, such as transparent glass, may alter the trajectory of the laser beam

2.1. LiDAR Technology 17

Figure 2.5: Laser illumination and return signal recording. Portions of the emitted
laser pulse are reflected by different targets resulting in multiple return signals for
each pulse. Different lidar systems have different return signal recording capabil-
ities [1, 2].

.

through refraction, further complicating the interpretation of the return sig-
nals. These effects are particularly problematic in environments with com-
plex geometries, such as urban areas with glass façades or metallic struc-
tures.

• Effect: The LiDAR sensor registers multiple returns for a single emitted
pulse, resulting in redundant or ambiguous data points in the point cloud.
This can lead to inaccuracies in the spatial representation of the environ-
ment, particularly in complex or cluttered scenes.

• Mitigation: Addressing multiple returns involves both hardware and soft-
ware solutions:

– Hardware: Advanced LiDAR systems use high-resolution timing cir-
cuits and multiple return detection capabilities to distinguish and record
separate signals more accurately. They may also incorporate adjustable
laser power to reduce over-reflections.

18 Chapter 2. Theoretical Background

– Software: Algorithms can filter and classify multiple returns to priori-
tize the most relevant points (e.g., the first return for surface detection
or the last return for ground detection). Additionally, data processing
techniques can model and account for multipath effects.

Occlusions

• Cause: Physical obstructions, such as buildings, vehicles, dense vegeta-
tion, or other objects that block the laser beam from reaching certain areas
in the environment.

• Effect: Results in voids or blind spots in the point cloud where no data is
recorded, reducing the completeness and accuracy of the 3D spatial repre-
sentation.

• Mitigation: Addressing occlusions requires a combination of sensor place-
ment, data fusion, and advanced processing techniques:

– Sensor placement and redundancy: Deploying multiple LiDAR sen-
sors at different vantage points can reduce occlusions by capturing ar-
eas hidden from a single sensor’s perspective. For example, mounting
LiDAR sensors at elevated positions or on moving platforms can help
minimize blind spots.

– Data fusion: Combining LiDAR data with information from other sen-
sors, such as cameras or radar, can fill in gaps caused by occlusions.
This multimodal approach enhances the completeness of the environ-
mental representation.

– Advanced algorithms: Post-processing techniques, such as interpo-
lation, extrapolation, or machine learning models, can estimate and
reconstruct missing data in occluded regions. These methods lever-
age patterns in the existing point cloud or incorporate prior knowledge
of the scene.

Fig: 2.6: When an object is crossing the LiDAR’s laser rays, the current points
(blue points) will occlude the previous points (orange points) collected at time
Tk−1. When an object is moving along the laser rays and away from the sensor,
the current points (blue points) will be occluded by all previous points (i.e., orange
points at Tk−1 and green points at Tk−i) that are further occluded by themselves
(i.e., orange points at Tk−1 are occluded by green points at Tk−i). Conversely,
when an object is moving along the laser rays and towards the sensor, the current
points (blue points) will occlude all previous points (i.e., orange points at Tk−1 and
green points at Tk−i) that further occlude themselves (i.e., orange points at Tk−1

occlude green points at Tk−i).

2.1. LiDAR Technology 19

Figure 2.6: Principle of occlusion [2].
.

Adverse weather conditions Environmental conditions such as rain, fog, dust,
and snow can significantly degrade LiDAR performance by scattering, absorbing,
or attenuating laser beams.

• Cause: Interaction of laser pulses with atmospheric particles:

– Rain: Refraction and partial reflection by water droplets, causing false
returns and reduced signal strength.

– Fog: Dense microscopic water particles scatter and attenuate the beam,
limiting effective range.

– Dust/Smoke: Scattering and absorption introduce noise and reduce
accuracy.

– Snow: Large reflective particles create multiple strong returns, confus-
ing the sensor.

• Impact:

– Reduces signal-to-noise ratio (SNR), limiting range and accuracy.
– Introduces false points or voids in the point cloud.
– Impairs detection of distant or small objects, critical for applications like

autonomous driving.

Sensor noise Intrinsic noise in LiDAR systems originates from internal pro-
cesses such as signal amplification and data conversion. Variability in compo-
nents like photodetectors, avalanche photodiodes (APDs), or analog-to-digital
converters introduces fluctuations in the measured signal. These inconsistencies
can lead to imprecise distance or intensity readings, affecting the overall accu-
racy of the point cloud and potentially misrepresenting the environment in critical
applications.

20 Chapter 2. Theoretical Background

2.1.5 LiDAR simulations techniques

Simulating LiDAR measurements is a fundamental approach for evaluating sen-
sor performance, testing perception algorithms, and validating autonomous sys-
tems in controlled, repeatable environments. These simulations allow researchers
to reproduce real-world challenges without the costs and risks associated with
physical experiments. Current methods for simulating LiDAR can be broadly di-
vided into two main categories: geometric approaches, such as ray casting, and
data-driven methods based on machine learning.

LiDAR simulators can be categorized into two main types based on their mod-
eling approach [31]:

Sensor measurement model This type of simulator replicates the measure-
ment technique used by a real LiDAR sensor and considers the sensor’s orien-
tation within the virtual scene. The measurement model uses ray tracing or ray
casting algorithms to emulate the process of emitting laser beams, detecting in-
tersections with objects in the scene, and calculating distances. This approach
accurately mimics the operational principles of a LiDAR sensor, such as time-of-
flight (ToF) or phase shift techniques, commented in section 2.1.

Sensor error model This type focuses on modeling the statistical errors ob-
served in real-world LiDAR measurements. It incorporates both systematic and
random errors caused by factors such as environmental conditions, surface re-
flectivity, and hardware limitations. The error model is designed to approximate
the deviations in measurement accuracy introduced by the physical properties of
the sensor and its operating environment.

Hybrid approach: Some simulators combine both approaches to achieve greater
accuracy and realism. These hybrid models integrate the operational character-
istics of the measurement model with the statistical approximations of the error
model, ensuring comprehensive simulation capabilities [32].

While the Measurement Model focuses on replicating the physical behavior of
LiDAR sensors and the Error Model accounts for imperfections, the implementa-
tion of these models relies on computational methods. These methods provide
the technical foundation to simulate the interaction of LiDAR rays with a virtual
environment and generate synthetic data. Two widely used approaches in this
context are Ray Casting and Machine Learning based LiDAR Simulation.

2.1.5.1 Ray casting for LiDAR simulation

Ray casting is a computational technique used to simulate LiDAR point clouds
by projecting rays into a reconstructed 3D scene and determining their intersec-

2.1. LiDAR Technology 21

tions with the scene geometry [33]. In this approach, the LiDAR’s configuration is
modeled, and rays are emitted from the simulated sensor’s origin to interact with
objects in the virtual environment.

The 3D scene is typically represented as a dense point cloud or a mesh struc-
ture. Ray casting involves dividing the sensor’s field of view into discrete frustums,
each corresponding to a single laser pulse. Within each frustum, intersections
between the emitted ray and the scene geometry are calculated to identify the
closest surface point along the ray’s path. This process effectively mimics the
time-of-flight measurement of a physical LiDAR sensor.

Conventional methods, such as Closest Point (CP) ray casting, select the
nearest intersection point for each ray to form the simulated point cloud. However,
CP methods may encounter challenges in complex scenarios, such as overlap-
ping rays, reconstruction errors in the virtual environment, or irregular scanning
patterns. These issues can lead to redundant points or inconsistencies in the
generated data.

Advanced techniques, such as First Peak Averaging (FPA), extend the ray
casting process by considering multiple intersections within each frustum. FPA
averages the points within the first peak of the depth distribution to estimate the
surface representation more accurately. The method uses a fixed peak width and
employs weighted averaging to refine the coordinates of the simulated points.
In addition to spatial coordinates (x,y,zx,y,z), ray casting can simulate additional
attributes, such as return intensity, providing a richer dataset for LiDAR simulation.

Mathematical foundations A ray is defined by its origin O and a direction vec-
tor D. Here, O represents the starting point of the ray in 3D space, and D is a
unit vector that indicates the direction in which the ray extends. The position P(t)
along the ray can be described mathematically as:

P(t) = O+ t ·D, t ≥ 0

where t is a scalar parameter that represents the distance from the origin along
the ray’s path.

The intersection of a ray with a geometric object is determined by solving
equations specific to the object’s geometry:

• Plane: A plane is defined by a point P0 on the plane and a normal vector
N. The intersection parameter t is computed as:

t =
(P0 −O) ·N

D ·N

If t > 0, the intersection point P(t) lies in the direction of the ray.

• Sphere: A sphere is defined by its center C and radius r, where C repre-
sents the position of the sphere’s center in 3D space, and r is the distance

22 Chapter 2. Theoretical Background

from the center to any point on the sphere’s surface. The intersection is
determined by solving:

∥P(t)−C∥2 = r2

Expanding and solving this quadratic equation yields the potential intersec-
tion points.

In LiDAR simulation, raycasting generates a synthetic point cloud by tracing
rays from the sensor’s origin into the virtual environment. The intersection points
represent detected surfaces, and additional properties such as reflectivity or an-
gle of incidence can be calculated to simulate return intensities. This process
enables the emulation of real-world LiDAR systems for testing and validation in
virtual environments.

2.1.5.2 Machine learning-based simulations

Recent advancements in machine learning (ML) have led to the development of
data-driven techniques for simulating LiDAR measurements [34, 35].

Overview of DyNFL DyNFL leverages neural fields to create volumetric repre-
sentations of the environment. The method separates the reconstruction into two
components:

• Static Background: Modeled as an independent neural field representing
the stationary elements of the environment.

• Dynamic Objects: Each moving object is modeled as a separate neural
field, enabling per-object editing and repositioning.

The final scene is composed by integrating these two components using a ray
elimination strategy that handles occlusions and transparency.

Mathematical model for ray composition The compositional neural fields in
DyNFL combine static and dynamic elements using the following equation:

C(x) =

{
Cstatic(x), if no dynamic intersection.
Cdynamic(x), if a dynamic object occludes the background.

(2.3)

where:

• C(x) is the final composed representation at point x.

• Cstatic(x) represents the static background field.

• Cdynamic(x) represents the field of dynamic objects.

2.2. Rain Simulation Techniques 23

DyNFL employs ray tracing to simulate LiDAR sensor behavior by casting rays
into the compositional neural fields and detecting intersections with surfaces.

The system determines whether the ray intersects a dynamic object or the
static background by calculating the nearest intersection point:

I(x) = argmini∈{static, dynamic}(ti) (2.4)

where ti is the distance to the closest intersection for the static or dynamic neural
fields.

Training and reconstruction The DyNFL framework is trained on real-world
and synthetic LiDAR data, incorporating object bounding boxes for dynamic ele-
ments. The training process involves minimizing a reconstruction loss:

Lreconstruction = ∥Preal − Ppred∥2 (2.5)

where:

• Preal is the ground truth point cloud measured by a real LiDAR sensor.

• Ppred is the point cloud predicted by the compositional neural field.

Conclusion Machine learning (ML)-based LiDAR simulations, such as DyNFL,
provide an advanced approach for re-simulating LiDAR scans in dynamic environ-
ments. This method leverages the adaptability of neural fields in conjunction with
ray tracing techniques. By independently reconstructing static and dynamic com-
ponents, it achieves a higher degree of realism and allows for greater flexibility in
editing LiDAR data.

2.2 Rain Simulation Techniques

As previously discussed, rain significantly impacts the performance of LiDAR sys-
tems by introducing noise and attenuating the accuracy of measurements. Since
one of the primary objectives of this work is to simulate the effects of rain on Li-
DAR data, this section provides a detailed review of state-of-the-art approaches
in this area.

The discussion is divided into two main aspects:

• Physical modeling of rain: This examines how rain interacts with LiDAR
signals and the surrounding environment, focusing on factors such as rain-
drop distributions, particle scattering, and absorption effects.

• Integration into LiDAR attenuation mechanisms: This explores how these
physical models are incorporated into LiDAR simulations to replicate the
degradation of sensor performance under rainy conditions.

24 Chapter 2. Theoretical Background

This review lays the groundwork for accurately replicating rain-induced noise
in LiDAR simulations, providing a comprehensive framework to understand and
simulate the effects of adverse weather on LiDAR measurements.

2.2.1 Phyisical models of rain

The physical modeling of rain focuses on understanding the interaction between
rain droplets and laser signals, which involves phenomena such as attenuation,
scattering, and absorption.

2.2.1.1 Rain drop size distribution

Rain droplets vary in size, and their distribution significantly impacts signal atten-
uation and scattering. Understanding these distributions is critical for accurately
modeling rain effects in LiDAR systems. Below, we discuss three key models
used to describe rain drop size distributions [36].

Marshall-Palmer distribution The Marshall-Palmer distribution [37] is one of
the most widely used models for describing rain drop size distribution. It defines
the relationship between rainfall intensity (measured in mm/h) and the number of
droplets per unit volume, assuming an exponential decay:

N(D) = N0e
−ΛD (2.6)

where:

• N(D): Number of drops per unit volume for a drop diameter D.

• N0: Concentration parameter related to rainfall intensity.

• Λ: Decay constant, which depends on the intensity of rainfall.

This model is particularly suitable for light and moderate rain but lacks preci-
sion for capturing the variability of larger drops in heavy rain.

Rainfall Intensity (mm/h) Drop Diameter (mm) Number of Drops (N(D)) Comment
Light Rain (0 - 2.5) 0.5 - 1.0 N(D) = N0e

−ΛD Small, uniformly distributed
Moderate Rain (2.5 - 10) 1.0 - 2.5 N(D) = 8000e−4.1D Increasing drop size

Heavy Rain (10 - 50) 2.5 - 5.0 N(D) = 16000e−5.2D Larger, sparse drops
Torrential Rain (>50) 5.0 - 8.0 N(D) = 32000e−6.3D Dominated by large drops

Table 2.1: Rain drop size distribution and parameters according to Marshall-
Palmer

2.2. Rain Simulation Techniques 25

Feingold-Levin distribution The Feingold-Levin distribution [38] provides a more
detailed representation of rain drop size, especially for heavy rainfall, where co-
alescence and fragmentation processes dominate. The distribution formula is
given by:

N(D) = N0D
me−λD (2.7)

where:

• N(D): Number of drops per unit volume for a drop diameter D.

• N0: Initial concentration parameter.

• Dm: A scaling factor that accounts for variability in drop sizes.

• λ: Decay parameter dependent on rainfall intensity.

This distribution captures the behavior of both small and large droplets more
effectively than the Marshall-Palmer model. It is particularly useful for simulating
scattering and attenuation effects in LiDAR systems under heavy rainfall.

Deirmendjian distribution The Deirmendjian distribution [39] is designed for
more complex atmospheric conditions and includes a broader range of particle
sizes, making it suitable for modeling not just rain, but also fog and clouds. It is
often expressed as:

N(D) = N0D
ae−bD (2.8)

where:

• N(D): Number of droplets for a given diameter D.

• N0: Scaling factor related to the concentration of droplets.

• a, b: Parameters that describe the shape of the distribution, allowing flexibil-
ity in modeling.

This distribution excels in scenarios with mixed precipitation, where both rain
and smaller particles like mist or fog coexist. Its flexibility makes it a powerful tool
for advanced atmospheric modeling.

Comparison of distributions The table below summarizes the key character-
istics of the three distributions:

26 Chapter 2. Theoretical Background

Distribution Formula Best Use Case Limitations
Marshall-Palmer N(D) = N0e

−ΛD Light to moderate rain Poor fit for large drops
Feingold-Levin N(D) = N0D

me−λD Heavy rain Requires more parameters
Deirmendjian N(D) = N0D

ae−bD Mixed precipitation Complex parameterization

Table 2.2: Comparison of different rain drop size distributions

Implementation of rain models in simulations In simulation environments,
physical rain models are implemented by generating rain droplets in a virtual 3D
space using probabilistic distributions. The key steps include:

• Generating rain droplets based on predefined size distributions.

• Simulating the interaction of the LiDAR beam with the droplets, including
attenuation, scattering, and noise effects.

• Applying random noise (e.g., Gaussian or Poisson) to replicate signal degra-
dation caused by rain-induced scattering.

2.2.2 Rain-induced attenuation on LiDAR signals

Rain-induced attenuation significantly impacts the performance of LiDAR systems
by reducing the strength of laser returns and introducing noise due to scattering
and backscattering. This section explores the effects of adverse weather condi-
tions on the optical properties of LiDAR signals, focusing on rain, which is critical
for understanding how environmental factors degrade the quality of point cloud
data.

The performance of laser scanners in adverse weather conditions is heavily
influenced by optical phenomena such as scattering, extinction, and backscat-
tering. These effects are caused by the interaction of the laser beam with at-
mospheric particles (e.g., water droplets), and they impact both the transmitted
signal and the received power. The cumulative result is a limitation in the effective
range, resolution, and accuracy of the sensor under such conditions.

Scattering, extinction, and backscattering The scattering (Qs), extinction (Qe),
and backscattering (Qb) coefficients describe the attenuation and deviation of
laser energy caused by atmospheric particles.

- Scattering: In the context of rain, scattering occurs when laser energy is
deflected in multiple directions upon interacting with raindrops. The size and
distribution of raindrops significantly influence the degree of scattering, with larger
droplets causing more pronounced deviations.

- Extinction: Extinction refers to the combined effect of scattering and absorp-
tion, resulting in a reduction of the laser’s transmitted energy. In rain, extinction

2.2. Rain Simulation Techniques 27

Water
DropletInfrared

Transmitter

 ScatterBack
Scatter

Extintion or
Forward scatter

Figure 2.7: Illustration of scattering, backscattering, and extinction.

limits the effective range of the LiDAR by diminishing the power of the laser signal
as it propagates through the raindrop-filled medium.

- Backscattering: Backscattering is a specific type of scattering where the
laser energy is reflected back toward the LiDAR sensor. In rain, backscattering
introduces noise into the signal, as raindrops themselves can appear as false
detections in the point cloud data.

2.2.2.1 Mie theory and Rayleigh scattering

The interaction of LiDAR signals with atmospheric particles is governed by two
main scattering mechanisms: Rayleigh scattering and Mie theory. These mech-
anisms describe how light interacts with particles depending on the size of the
particle relative to the wavelength of the light.

Rayleigh scattering Rayleigh scattering [40] occurs when the size of the par-
ticle (r) is much smaller than the wavelength of the light (λ) (r ≪ λ). This phe-
nomenon is typical for small particles such as air molecules or very fine mist.

Rayleigh scattering plays a role in LiDAR signal attenuation by redirecting a
portion of the laser’s energy away from the original propagation path. Although
this effect is less significant compared to Mie scattering for larger particles, it
contributes to the overall reduction in signal intensity, particularly in clear atmo-
spheric conditions with fine particulate matter. The key characteristics of Rayleigh
scattering are:

• Size dependency: Rayleigh scattering is applicable for particles smaller
than 0.1µm. In this size range, the interaction with the laser beam primarily
depends on the relative size of the particle to the wavelength.

• Wavelength dependency: The intensity of Rayleigh scattering is inversely
proportional to the fourth power of the wavelength (Is ∝ λ−4). This means
shorter wavelengths (e.g., blue light) are scattered more strongly than longer

28 Chapter 2. Theoretical Background

wavelengths (e.g., red light). This principle explains why the sky appears
blue and also affects the performance of LiDAR systems operating in differ-
ent wavelength bands.

• Distribution: Scattering occurs uniformly in all directions, but with a slightly
higher intensity in forward and backward directions relative to the original
path of propagation.

Impact on LiDAR Signals In the context of LiDAR systems, Rayleigh scatter-
ing contributes to signal attenuation by scattering a portion of the laser’s energy
out of the forward-propagating beam. While Rayleigh scattering generally has a
minor impact compared to Mie scattering, it can still affect the signal-to-noise ratio
(SNR) in environments dominated by very fine particles or air molecules. This is
especially relevant for LiDAR systems operating at shorter wavelengths, as these
are more susceptible to scattering losses due to the λ−4 dependency.

Mie theory Mie theory [41] describes scattering when the size of the particle (r)
is comparable to the wavelength of the light (r ∼ λ). This is particularly relevant
for larger particles such as water droplets.

Mie theory describes scattering by particles whose radius is comparable to
the wavelength of the laser light. This applies to a wide range of atmospheric
particles commonly encountered in LiDAR applications.

Unlike Rayleigh scattering, the dependence of scattering intensity on wave-
length in Mie theory is more complex and less pronounced. Mie scattering does
not strongly favor shorter wavelengths, and its intensity can vary non-monotonically
based on the particle size and refractive index.

A key characteristic of Mie scattering is its highly directional nature, with a
significant portion of the scattered intensity concentrated in the forward direction.
This forward scattering plays a critical role in LiDAR systems, as it directly influ-
ences the signal-to-noise ratio and the accuracy of distance measurements.

Comparison of Rayleigh and Mie scattering The key differences between
Rayleigh scattering and Mie theory are summarized in Table 2.3.

Property Rayleigh Scattering Mie Theory
Particle size relative to wavelength (r) r ≪ λ r ∼ λ
Wavelength dependency (Is) ∝ λ−4 Weak or negligible
Scattering distribution Uniform (all directions) More intense in forward direction
Relevant conditions Air molecules, fine mist Rain, dust, large droplets

Table 2.3: Comparison of Rayleigh Scattering and Mie Theory

2.2. Rain Simulation Techniques 29

2.2.2.2 Attenuation

To better understand the role of particle properties in this process, we consider
the concept of extinction efficiency (Qe). Extinction efficiency describes the over-
all attenuation of the light beam as it propagates through a medium containing
particles. This efficiency depends on several factors, including the particle radius
(r), the wavelength of the light (λ), and the refractive index of the particle material
(m):

Qe = f(r, λ,m) (2.9)

Extinction efficiency encompasses two primary contributions: scattering effi-
ciency (Qs) and absorption efficiency (Qa). Mathematically, this relationship is
expressed as:

Qe = Qs +Qa (2.10)

• Qs (Scattering efficiency) quantifies the proportion of light redirected in
various directions due to interaction with the particle.

• Qa (Absorption efficiency) measures the fraction of light energy absorbed
by the particle, which is then converted into other forms of energy, such as
heat.

The balance between Qs and Qa depends on the material properties of the parti-
cle (refractive index m) and the wavelength of the incident light. This relationship
is critical in understanding how different types of particles attenuate light in LiDAR
applications, as both scattering and absorption directly influence the behavior of
the laser signal. The forward-directed scattering typical of Mie theory has a sig-
nificant impact on the signal-to-noise ratio, while the absorption component con-
tributes to energy losses that reduce the detectable signal, leading to extinction.
Understanding Qe is therefore essential for accurately modeling the attenuation
of the laser signal.

Relevance to LiDAR systems Understanding these scattering and attenuation
mechanisms is essential for accurately modeling the performance of LiDAR sys-
tems under adverse weather conditions.

The interaction between the laser and atmospheric particles is influenced by
two key factors: the laser wavelength and the particle size and distribution. LiDAR
systems typically operate in one of three wavelength ranges, each with distinct
scattering and attenuation characteristics:

• Visible Light (500nm): wavelength.

30 Chapter 2. Theoretical Background

• Near-Infrared (NIR, 900nm):

• Short-Wave Infrared (SWIR, 1550nm):

Particle Size and Distribution: The size and spatial distribution of droplets
strongly influence how light interacts with atmospheric particles. Larger particles
(> 1mm) are less effective at backscattering and primarily affect extinction in the
SWIR range due to Fresnel effects. In contrast, smaller particles (< 1mm) are
more efficient at scattering light in the visible and NIR ranges, causing greater
signal degradation.

Mathematical models of rain attenuation Building on the principles of Mie
and Rayleigh scattering, as well as the impact of raindrop size distribution on
scattering and extinction properties, the attenuation of laser signals in rain can
be quantitatively modeled. One of the most commonly used approaches is the
Beer-Lambert law [42], which provides a practical framework for calculating the
signal power loss due to rain:

Pr = Pte
−αR (2.11)

where:

• Pr: Received signal power.

• Pt: Transmitted signal power.

• α: Attenuation coefficient, which depends on rain density, drop size distri-
bution, and the laser wavelength.

• R: Distance traveled by the laser beam.

The attenuation coefficient α encapsulates the effects of scattering and ab-
sorption, which were previously discussed in the context of Mie and Rayleigh
theories. This coefficient can be derived from empirical or theoretical models that
account for the rainfall intensity and the particle size distribution.

The Beer-Lambert law serves as a macroscopic representation of the cumu-
lative effects of scattering and absorption over a given path length. It provides
a practical tool for modeling rain attenuation in LiDAR systems while remaining
consistent with the underlying physical principles.

Part II

Project development

31

Chapter 3

Experimental Setup

Contents
3.1 ROS 2 Overview . 36

3.1.1 Communication protocol 36

3.2 Unity Engine Overview . 37

3.2.1 Key features and advantages of using Unity in this project 40

3.3 Simulation Setup . 42

3.3.1 Integrating ROS 2 and Unity for simulation 42

3.3.2 Components of the simulation framework 44

3.3.3 Sensor integration . 54

3.4 Introducing The Rain Simulation Model 63

3.4.1 Model structure . 65

3.4.2 Detailed technical justification 66

3.4.3 Model assumptions . 72

3.4.4 Validation model . 74

33

34 Chapter 3. Experimental Setup

This chapter provides a comprehensive overview of the simulation framework
developed to support the evaluation and testing of autonomous navigation sys-
tems. The framework is built around the integration of key components such as
the Unity Engine, ROS 2, and high-fidelity environmental models, as illustrated
in the project’s flowchart (see Figure 3.1). The chapter is structured to guide
the reader through the motivations behind the framework, its design, and the
methodologies employed to achieve a modular, scalable, and realistic simulation
environment.

The integration of ROS 2 and Unity is a core aspect of the project, enabling
seamless communication between sensors and the simulated environment. This
is further expanded upon through the detailed design of the simulation framework,
which includes high-definition render pipelines, maps, and 3D models, as well as
the implementation of the AURORA vessel.

A key contribution of this chapter is the introduction of the Rain Simulation
Model, a novel addition to the framework that simulates the impact of rainfall on
LiDAR sensor data. This model, along with its structure, assumptions, and valida-
tion, plays a critical role in enhancing the realism of the simulation. The chapter
concludes with an evaluation of the framework through initial tests and valida-
tion metrics, offering insights into its performance under various environmental
conditions.

The overall goal of this chapter is to describe the experimental setup in detail,
providing the foundation for the subsequent evaluation of the framework in the
experiments and results section.

35

UNITY ENGINE

SCENARIO

AURORA vessel

Sensors

3D Models Map Water System

Rain Simulation Model

ROS2 topic:
LiDAR/RainyPointcloud

ROS2 topic:
LiDAR/RawPointcloud

Figure 3.1: Flow chart representing the architecture of the project and its data
flow. At the top, the Unity Engine acts as the central simulation environment.
Within it, the scenario is defined, comprising 3D models, a map, and a water sys-
tem, which collectively simulate realistic environmental conditions. The AURORA
vessel operates within this environment, equipped with sensors that generate raw
LiDAR data. This data is transmitted as an ROS 2 topic to the Rain Simulation
Model. The Rain Simulation Model processes the raw LiDAR data, introducing
rain-induced noise and effects. The modified data is then transmitted as another
ROS 2 topic, enabling further analysis of LiDAR performance under simulated
rain conditions. This chart visually encapsulates the interactions and components
within the project framework.

36 Chapter 3. Experimental Setup

3.1 ROS 2 Overview

ROS is a set of open-source software libraries and tools that stands as a cor-
nerstone in the development of robotic applications, offering a powerful frame-
work that facilitates both the creation and the management of complex robotic
systems. ROS provides common set of interfaces for accessing sensors and ac-
tuators, and it includes libraries for things like message passing, navigation, and
control. It also has a large and active community of developers who contribute to
its development and provide support to users.

3.1.1 Communication protocol

At the heart of ROS 2 is an enhanced communication system designed for flexi-
bility, scalability, and real-time performance. Unlike ROS, which relies heavily on
a centralized ROS Master, ROS 2 employs a decentralized architecture based on
the Data Distribution Service (DDS) middleware. This allows nodes to discover
and communicate with one another without requiring a central hub, improving
fault tolerance and enabling ROS 2 to operate effectively in distributed systems.

In ROS 2, nodes interact through a dynamic peer-to-peer network, exchanging
data and collaborating on tasks such as sensing, actuation, and computation.
Instead of relying on a master node for registration and coordination, Discovery
Servers or DDS mechanisms are used to manage node discovery. This transition
allows for greater flexibility and real-time guarantees, particularly in scenarios like
robotics fleets or industrial applications.

As with ROS, communication between nodes is facilitated by topics, enabling
nodes to either publish or subscribe to specific streams of data. In a typical con-
figuration, a single publisher sends data to multiple subscribers. As depicted in
Figure 3.2, nodes in ROS 2 can act both as publishers and subscribers, ensuring
efficient data exchange. Topics in ROS 2 also serve as a filtering mechanism,
ensuring that nodes only receive messages relevant to their subscribed topics.
The underlying DDS middleware handles the delivery of messages with Quality
of Service (QoS) policies, giving developers fine-grained control over communi-
cation parameters such as reliability, durability, and latency.

A key feature of ROS 2 is its improved support for real-time systems. QoS
settings allow messages to meet specific timing and reliability requirements. For
example, you can configure topics for reliable transmission (guaranteeing mes-
sage delivery) or best-effort transmission (minimizing overhead for less critical
data). This enables ROS 2 to be used in scenarios with strict performance re-
quirements, such as autonomous vehicles or high-frequency sensor networks.

The data exchanged through topics in ROS 2 is encapsulated in ROS mes-
sages, which remain fundamental to the communication system. ROS 2 mes-
sages are used to represent data such as sensor readings, robot poses, or im-

3.2. Unity Engine Overview 37

Figure 3.2: ROS 2 communication flow [3].

ages. They follow a structured format, often including integers, floats, booleans,
strings, and arrays, and are serialized efficiently for transmission.

Another crucial feature of ROS 2 is its support for ROS 2 Bags, similar to ROS,
but with enhanced capabilities. These .bag files record messages from specified
topics for offline analysis, visualization, or debugging. Tools like ros2 bag enable
recording and playback, making it easier to analyze complex system behaviors or
use recorded data for development and testing.

With its decentralized architecture, real-time capabilities, and fine-tuned QoS
control, ROS 2 provides a more robust and flexible platform for building and de-
ploying robotics systems, ensuring scalability across distributed and dynamic en-
vironments.

3.2 Unity Engine Overview

At the core of Unity Engine lies a highly versatile and powerful real-time develop-
ment platform designed for creating interactive 2D, 3D, and XR (AR/VR) experi-
ences. Unity’s architecture is built to provide a seamless workflow for developers,
allowing them to design, simulate, and deploy applications across a wide range
of platforms, including mobile devices, desktop computers, consoles, and head-
mounted displays.

Unity Engine operates on a component-based architecture. The foundation
of any Unity project is the GameObject (see Fig: 3.3), which acts as a container
for various components. Components define the behavior and properties of a

38 Chapter 3. Experimental Setup

Figure 3.3: Hierarchy of a Unity game object and its components, including trans-
form, rigid body, colliders, mesh render, and scripts. (Source [4]).

GameObject, enabling developers to create complex interactive systems by at-
taching predefined or custom scripts. This modular design simplifies develop-
ment, allowing for scalability and reusability of code.

One of Unity’s standout features is its Scene System, which allows develop-
ers to structure their projects as collections of GameObjects and assets. Scenes
serve as containers for all the elements in a particular environment, including
lighting, physics, and scripts. Developers can load and manage multiple scenes
dynamically during runtime, enabling smooth transitions and modularity in appli-
cation design.

Unity supports C# scripting as its primary programming language. Developers
use C# to define custom behaviors, implement game logic, and interface with
Unity’s comprehensive Application Programming Interface (API). The scripting
environment integrates tightly with Unity’s Editor, enabling real-time updates and
debugging through the powerful Visual Studio development tools.

Communication within Unity is facilitated through events and messaging sys-
tems. Unity’s built-in event system allows for efficient interaction between GameOb-
jects, while the messaging system supports dynamic communication by invoking
methods across different components. These systems are fundamental for com-
plex interactions in applications.

Another key aspect of Unity Engine is its Physics System, powered by NVIDIA
PhysX. This system provides robust tools for simulating realistic physical interac-
tions, including rigid body dynamics, collisions, and joints. It also includes fea-
tures for soft body physics and cloth simulations.

Unity’s Rendering Pipeline is another critical component of its architecture.
Unity offers multiple rendering pipelines, including the Built-in Pipeline, the Uni-
versal Render Pipeline (URP) for optimized performance, and the High Definition
Render Pipeline (HDRP) for cutting-edge visuals. These options allow developers
to tailor their projects to the specific needs of their target platforms.

Unity Engine also provides extensive support for Asset Management. Devel-
opers can leverage Unity’s Asset Store to access a vast library of prebuilt models,
textures, animations, and scripts. The engine’s import pipeline allows seamless

3.2. Unity Engine Overview 39

integration of assets from external tools like Blender, ensuring that creative work-
flows remain uninterrupted.

Unity’s Play Mode and real-time simulation capabilities empower developers
to prototype, test, and debug their projects interactively. This iterative workflow
shortens development cycles and facilitates rapid experimentation.

With its versatility, powerful tools, and extensive ecosystem, Unity Engine
serves as a cornerstone for real-time 3D application development, enabling cre-
ators to bring their ideas to life across a wide variety of platforms and industries
[43, 5].

Raycasting in Unity Raycasting is a computational technique widely used in
computer graphics and physics simulations to trace rays into 3D scenes. Lever-
aging Unity’s physics engine, raycasting benefits from optimized tools like
Physics.Raycast, which efficiently handles ray-object intersection calculations
using the engine’s built-in colliders and spatial partitioning systems.

In the context of LiDAR simulation, raycasting is employed to replicate the
behavior of laser sensors, tracing rays from a virtual sensor and detecting their
intersection points to generate synthetic point clouds. Unity’s integration simpli-
fies the implementation by providing high-performance raycasting capabilities and
seamless interaction with 3D scene geometry.

Implementation in Unity Unity provides the Physics.Raycast function to per-
form raycasting in 3D scenes. This function uses the equations above to detect
intersections between rays and object colliders in the virtual environment. A basic
implementation in Unity C# is shown below:

40 Chapter 3. Experimental Setup

List 3.1: Implementation of a LiDAR simulation script using Unity’s
Physics.Raycast method [44].

using UnityEngine;

public class LidarSimulation : MonoBehaviour
{

void Update ()
{

RaycastHit hit;
Vector3 origin = transform.position;
Vector3 direction = transform.forward;

// Perform the raycast
if (Physics.Raycast(origin , direction , out hit))
{

// Process the hit information
Debug.Log("Object detected at a distance of: "

+ hit.distance);
}

}
}

Optimizations and configurations Several features enhance the performance
and configurability of raycasting in Unity:

• Layer Masks: Specify which objects are considered during raycasting to
improve performance.

• Max Distance: Limit the ray’s range to simulate the maximum detection
distance of a real LiDAR sensor.

• Query Trigger Interaction: Configure whether the ray should interact with
colliders marked as triggers.

3.2.1 Key features and advantages of using Unity in this project

The decision to create a custom simulation environment emerged from extensive
research into existing simulators and the scientific work in this field. Initially, the
project considered improving the simulation model developed by the MSS group
at DLR, which utilized Gazebo as its engine. While Gazebo is well-integrated with
ROS and widely recognized for its compatibility, a critical limitation was identified:
the canal water lacked implemented physics and did not interact realistically with
the vessel. Consequently, the vessel’s movement resembled that of a car rather
than a boat, significantly reducing the realism and applicability for inland waterway
scenarios.

This limitation prompted an investigation into alternatives for improving wa-
ter physics. Most existing simulators focused primarily on underwater robotics,

3.2. Unity Engine Overview 41

while the few that implemented realistic surface vessel physics faced issues such
as limited availability, lack of maintenance, or incompatibility with the versions of
ROS1 or Ubuntu in use. After thorough evaluation, Unity was chosen as the foun-
dation for a new simulation framework, leveraging ROS 2 and targeting Ubuntu
22.04.

Unity was selected for this project due to its ability to handle complex 3D envi-
ronments and its extensive customization options, addressing the gaps identified
in existing solutions. Several key features of Unity directly support the objectives
of this work:

Unity’s high-fidelity rendering capabilities enable the creation of visually ac-
curate and detailed environments, essential for replicating real-world conditions
in simulations. The physics engine provides tools for modeling realistic interac-
tions, including collisions and environmental effects like rain particles or water
dynamics. This is particularly important for creating realistic water interactions
and vessel dynamics, essential for high-fidelity inland waterway simulations. Ad-
ditionally, the use of customizable shaders allows for advanced effects, such as
light scattering and surface wetness, which are critical for accurately simulating
sensor performance under adverse conditions.

The integration with ROS 2 enables efficient real-time communication between
the simulation environment and robotic frameworks, facilitating smooth data ex-
change and control. Unity’s cross-platform support ensures flexibility for testing
across different systems, while its extensive asset library accelerates develop-
ment by providing ready-made models and tools. Together, these features make
Unity an ideal platform for creating realistic, high-fidelity simulations tailored to
the needs of this project.

In addition to these technical capabilities, Unity was selected over alterna-
tives such as Unreal Engine or custom-built simulation tools due to its numer-
ous strategic advantages (see Table 3.1). Unity offers ease of integration with
ROS 2 through established methods and plugins, which simplify the development
process and enable seamless communication between components. Its intuitive
interface and extensive documentation further accelerate the creation of custom
simulations.

Unity’s scalability allows for the addition of features such as varying weather
conditions or sensor models without substantial rework, while its performance
optimization tools ensure efficient rendering and simulation even in complex sce-
narios.

By leveraging Unity’s advanced capabilities, this project bridges the gap be-
tween theoretical models and practical applications, providing a robust platform
for evaluating sensor behavior in realistic settings. Furthermore, both Unity and
ROS 2 benefit from active development and support, ensuring long-term compat-
ibility and scalability, making them an ideal choice for advancing maritime simula-
tion [45, 46, 47, 48].

42 Chapter 3. Experimental Setup

Feature Unity Unreal Engine Custom
Ease of ROS 2 Integration High Medium Low
Scalability High High Medium
Performance Tools Comprehensive Limited Custom
Intuitive Interface Yes No No
Documentation Extensive Extensive None
Asset Library Extensive Medium None
Rendering Quality High Very High Limited
Development Time Fast Moderate Slow

Table 3.1: Comparison of Simulation Platforms for Robotics

3.3 Simulation Setup

This section describes the process of creating the simulation project in Unity,
aimed at realistically replicating the navigation of a small vessel through canals.
The development of the simulated environment involved various stages, from the
initial project setup to the integration of virtual sensors and the implementation of
scripts that define the system’s behavior.

Figure 3.4: High-fidelity simulation environment

3.3.1 Integrating ROS 2 and Unity for simulation

The integration between Unity and ROS 2 is a critical area of focus in robotics
and autonomous systems and serves as a cornerstone of the contributions pre-
sented in this work. However, Unity does not natively support ROS 2, requiring

3.3. Simulation Setup 43

external plug-ins or tools to establish communication. This section explores the
available integration options, distinguishes between bridging solutions and em-
bedded approaches, and justifies the selection of ros2-for-unity for this project
[49] .

Since Unity lacks out-of-the-box support for ROS 2, external solutions are es-
sential to bridge these two ecosystems. These tools enable functionalities such
as sensor data simulation, robotic behavior emulation, and control algorithm eval-
uation. However, existing solutions vary significantly in terms of performance,
complexity, and applicability, necessitating a careful selection to achieve high-
fidelity simulations.

Three primary categories of solutions address the Unity-ROS 2 integration
challenge:

Bridge-based solutions Bridge-based tools act as intermediaries between Unity
and ROS 2. Examples include:

• ROS-TCP-Connector: A widely-used bridge that uses a TCP-based pro-
tocol to connect Unity with ROS 2. While functional, this approach intro-
duces communication latency, making it less suitable for real-time applica-
tions [50].

• ROSSharp: A lightweight open-source tool that provides basic connectivity
between Unity and ROS 2. However, it lacks robustness and native ROS
2 features, making it unsuitable for demanding use cases. Additionally, it
requires extensive manual configuration [51].

Custom socket solutions Some developers design bespoke socket-based sys-
tems for Unity-ROS 2 communication. These solutions offer flexibility but demand
significant development effort. Moreover, they do not fully leverage the advanced
features of ROS 2, such as Quality of Service (QoS) policies or native tools.

Embedded solutions Unlike bridge-based approaches, embedded solutions
integrate Unity entities directly as native ROS 2 components. This eliminates
intermediary communication layers, enabling superior performance and tighter
compatibility with ROS 2’s middleware stack.

Given the limitations of traditional bridge-based approaches, this project se-
lected ros2-for-unity, an embedded solution, for its superior performance and
integration capabilities [49]. By embedding Unity entities as native ROS 2 nodes,
ros2-for-unity ensures seamless communication and efficient simulations.

ros2-for-unity provides the following key benefits:

44 Chapter 3. Experimental Setup

• High Performance: By eliminating intermediary layers, it achieves lower
latency and higher throughput.

• Native ROS 2 Compatibility: Unity entities function as native ROS 2 nodes,
fully supporting ROS 2 tools, Quality of Service (QoS) settings, and time
synchronization.

• Rich Toolset: Includes essential simulation tools such as transformations,
sensor interfaces, clock synchronization, and a MonoBehavior-encapsulated
spinning loop for efficient node execution.

• Customizable Messaging: Supports all standard ROS 2 messages and
automatically generates custom messages during the build process, simpli-
fying development workflows.

• Ease of Integration: Packaged as a Unity asset, it streamlines the setup
process for simulation projects.

By directly integrating with the ROS 2 middleware stack, including the rcl
layer, ros2-for-unity overcomes the typical bottlenecks associated with bridg-
ing solutions. This approach optimizes performance, ensures seamless compati-
bility, and simplifies the development of advanced robotic simulations.

In conclusion, ros2-for-unity was selected for its ability to embed Unity enti-
ties as native ROS 2 nodes, ensuring real-time performance and scalability. This
solution aligns with the project’s requirements for high-fidelity simulations and
tight integration with the ROS 2 ecosystem.

3.3.2 Components of the simulation framework

3.3.2.1 Maps and 3D models

The first step in building the simulation environment was to design the virtual
representation of the Westhafen canals in Berlin. Using real-world measurements
and mapping data, a base map was imported into Unity to serve as the foundation
of the scene (Fig: 3.5). This map was complemented by 3D models and objects
used to test the performance. The models were carefully chosen or created to
strike a balance between visual fidelity and computational efficiency, ensuring the
simulation could run smoothly while maintaining realism.

3.3. Simulation Setup 45

(a)

(b)

Figure 3.5: Westhafen Satellite Image (a), Westhafen Map on Unity (b)

The use of graphical tools like Blender [6] allows for precise extraction and
refinement of individual objects from the imported map data. By isolating key
structures, such as buildings or other relevant features, these objects can be en-
hanced or modified to improve their realism and suitability for the simulation. For
example, specific buildings were extracted from the Westhafen area and inte-
grated as standalone 3D models into the Unity scene (Fig: 3.6). This process
not only ensures visual consistency but also enables targeted testing of LiDAR
performance on distinct objects within the simulation environment.

46 Chapter 3. Experimental Setup

Figure 3.6: An extracted building model from the Westhafen map.

To ensure the proper functioning of the simulation framework and to conduct
specific tests on the sensors, additional scenes were developed. These test sce-
narios were designed to isolate and evaluate individual components, such as
LiDAR accuracy and rain simulation effects. Each scene was tailored to address
a particular aspect of the project, allowing for a systematic assessment of sensor
performance under controlled conditions. These environments provided valuable
insights into the robustness and reliability of the simulation framework.

3.3. Simulation Setup 47

(a)

(b)

Figure 3.7: Additional test scenes developed for sensor validation and framework
evaluation. (a) LiDAR accuracy test scene with structured objects and distinct
characteristics to assess sensor performance. (b) Sixteen-cylinder scene de-
signed to isolate and evaluate the performance of the Velodyne VLP-16 LiDAR
sensor.

As shown in Figure 3.7(a), the LiDAR accuracy test scene was designed with
various objects, each featuring different characteristics, to evaluate how the Li-

48 Chapter 3. Experimental Setup

DAR sensor performs in diverse scenarios and to test the rain model introduced
later. The scene depicted in Figure 3.7(b) was created for a more precise evalu-
ation of the LiDAR sensor’s performance. Specifically, Velodyne VLP-16, with its
360° field of view and 16 layers, benefits from this setup as it isolates individual
rings, enabling a detailed analysis of how each layer of the LiDAR operates.

3.3.2.2 High Definition Render Pipeline for ocean simulation

One of the critical components of the scene was the simulation of water. Unlike
traditional inland waterway simulations that often neglect water dynamics, this en-
vironment incorporates a dynamic water body using Unity’s physics engine. The
water was configured to respond to interactions with objects, such as the AU-
RORA vessel, creating ripples and drag forces to simulate realistic conditions.
This setup added a layer of complexity to the environment, enabling a more au-
thentic testing platform for sensor and system evaluations.
Technical parameters and configuration of the game objects is detailed in Ap-
pendix A.

Water physics The High Definition Render Pipeline (HDRP) in Unity provides
a robust framework for creating visually realistic and physically accurate simula-
tions of large water bodies, such as oceans, lakes, and rivers. HDRP is designed
to handle the complexity of water dynamics, leveraging advanced rendering tech-
niques and integrated physics systems. This makes it particularly suitable for
projects requiring high-fidelity environmental simulations.

3.3. Simulation Setup 49

(a) Rendered HDRP water in Unity with realistic lighting and reflections.

(b) Underlying water mesh structure showing the geometry used for wave simulation.

Figure 3.8: Visualization of the HDRP water system in Unity [5]: (a) rendered
ocean surface and (b) water mesh geometry.

Advanced water system Starting with Unity 2023, HDRP includes an advanced
water simulation system tailored for oceanic and maritime environments. This
system models water dynamics using Gerstner waves and Fast Fourier Trans-

50 Chapter 3. Experimental Setup

form (FFT) algorithms to simulate realistic wave patterns. Is it possible to fine-
tune parameters such as wave height, speed, and direction to replicate specific
conditions, such as calm waters or stormy seas.

Environmental interaction HDRP seamlessly integrates atmospheric and light-
ing effects with water simulation. Features such as real-time reflections, volumet-
ric fog, and global illumination enhance the visual consistency of the scene.

Object interaction and physics One of HDRP’s strengths is its ability to sim-
ulate the interaction between water and objects. Ships, buoys, and other enti-
ties can interact with the water surface, generating realistic waves, wakes, and
splashes. This interaction is achieved through Unity’s integrated physics engine,
which ensures that objects respond dynamically to the water’s motion.

Applications in this project While Unity’s HDRP is renowned for delivering un-
paralleled realism and advanced rendering capabilities, its default configurations
can be resource-intensive. To address this, the HDRP settings were carefully op-
timized in this project to ensure computational efficiency without compromising
the quality required for realistic maritime simulations. Adjustments were made to
parameters such as rendering resolution, lighting effects, and wave complexity to
strike a balance between performance and visual fidelity.

By tailoring HDRP to the specific needs of this project, the simulation frame-
work achieves the efficiency necessary for real-time operation on high-performance
hardware, enabling robust testing and validation of the vessel’s sensors and navi-
gation systems. The ability to model dynamic water behaviors and environmental
effects with reduced resource consumption makes HDRP an invaluable tool in
this context. Through these optimizations, HDRP supports the creation of a re-
alistic and immersive simulation environment while meeting the computational
constraints critical for this project.

3.3.2.3 The AURORA vessel

The centerpiece of the simulation is the AURORA vessel, a pleasure craft utilized
by the Multi Sensors Systems (MSS) group at DLR. In real measurement cam-
paigns, this vessel is equipped with a full sensor set mounted on a frame on its
exterior and traveled typically along the urban inland waterway from Berlin. This
section describes the 3D model of AURORA, its integration into the simulation
framework, and its role as the primary testbed for sensor and algorithm evalua-
tion.

3.3. Simulation Setup 51

Figure 3.9: The AURORA vessel traveling along the Berlin urban canals

The 3D model of the AURORA vessel was designed to reflect its real-world
counterpart in terms of dimensions and structure. Using CAD files and reference
images, the model was developed and imported into Unity. To balance realism
with computational efficiency, unnecessary details were simplified without com-
promising the essential features of the vessel. Figure 3.10 illustrates the final 3D
model integrated into the simulation.

52 Chapter 3. Experimental Setup

Figure 3.10: 3D model of the AURORA vessel integrated into Unity.

3.3.2.4 Dynamic characteristics and physics configuration

To accurately simulate the behavior of the AURORA vessel, its physical properties
and dynamic characteristics were carefully configured in Unity. Key parameters
included:

• Weight and Buoyancy: The vessel’s weight was set according to its real-
world specifications, and buoyancy was calculated to ensure proper interac-
tion with the simulated water surface.

• Propulsion System: A propulsion model was implemented to simulate the
vessel’s movement, allowing precise control of speed and direction.

• Hydrodynamic Effects: Simplified hydrodynamic forces, such as drag and
resistance, were incorporated to mimic the vessel’s behavior in water.

These configurations ensured that the AURORA vessel responded realistically
to external forces, such as waves and currents generated by the HDRP water
system.
More details of parameters used can be found in Appendix A.

Grid and mesh representation of the AURORA vessel To achieve an accu-
rate simulation of the AURORA vessel’s behavior in the virtual environment, both
its grid layout and mesh structure were carefully designed and implemented.

Figure 3.11a illustrates the grid representation of the vessel. The grid is used
for aligning the vessel within the simulation environment and ensuring proper in-
teraction with the water surface. This grid defines the boundaries and spatial po-
sitioning of the vessel, helping to manage its placement relative to environmental
elements such as waves, currents, and other objects.

3.3. Simulation Setup 53

Figure 3.11b shows the vessel’s mesh structure. The mesh represents the
3D geometry of the vessel and is essential for calculating physical interactions
with the water. By defining the hull’s shape, the mesh enables the simulation
of hydrodynamic effects, including drag, buoyancy, and wave resistance. These
effects are critical for replicating realistic navigation behavior in the simulation.

(a) Grid representation of the AURORA vessel for alignment within
the simulation environment.

(b) Mesh structure of the AURORA vessel, used for hydrodynamic
calculations.

Figure 3.11: Grid and mesh representations of the AURORA vessel used in the
simulation framework.

54 Chapter 3. Experimental Setup

3.3.2.5 Role in the simulation framework

The AURORA vessel serves as the primary platform for evaluating sensor per-
formance and navigation algorithms under realistic conditions. Sensors such as
LiDARs, and IMUs were virtually mounted on the vessel to simulate real-world
scenarios. The vessel was tested in various environments, including calm wa-
ters, rough seas, and adverse weather conditions, to assess the robustness and
accuracy of the integrated systems. By using the AURORA vessel as a testbed,
the simulation framework provides a controlled yet realistic environment for vali-
dating the performance of autonomous navigation technologies.

3.3.2.6 Modular and scalable design

The environment was developed with modularity and scalability in mind,
enabling future additions and refinements. Each component of the simulation
the map, water, AURORA, and sensors was designed to function independently,
allowing for adjustments or replacements as needed. This modular approach
ensures that the environment can adapt to new requirements or expanded use
cases, making it a flexible tool for research and development.

3.3.3 Sensor integration

To enable meaningful experimentation, the simulation environment includes a
suite of sensors mounted on the AURORA vessel [52, 53]. These sensors, in-
cluding LIDAR and IMU were integrated into the Unity scene and calibrated to
replicate their real-world counterparts. Each sensor was carefully positioned and
configured to ensure accurate data generation, allowing for the simulation of re-
alistic conditions such as sensor noise, occlusions, and environmental interfer-
ences. This setup supports the collection of comprehensive datasets for further
analysis and validation.

3.3. Simulation Setup 55

Figure 3.12: IMU and LiDAR sensors integrated into Unity. The sensors are po-
sitioned relative to the AURORA vessel’s structure, ensuring accurate alignment
with the ship’s coordinate system. Their placement is designed to be easily ad-
justable, allowing for repositioning to different locations on the vessel. This flexibil-
ity enables testing various configurations and scenarios, enhancing the versatility
of the simulation environment.

3.3.3.1 Inertial Measurement Unit

The Inertial Measurement Unit (IMU) is a critical sensor for estimating the vessel’s
orientation, angular velocity, and acceleration. In the simulation, a virtual IMU
was integrated into the AURORA vessel to replicate the functionality of its real-
world counterpart. The IMU was configured to generate data corresponding to
six degrees of freedom (6-DoF), including linear acceleration along the x, y, and
z axes, as well as angular rates around these axes.

56 Chapter 3. Experimental Setup

Figure 3.13: 3D model of the IMU sensor integrated into Unity.

Positioning and calibration The IMU was carefully positioned within the virtual
vessel to ensure its measurements aligned with the vessel’s reference frame.
Calibration was performed to match the characteristics of a typical IMU sensor,
including the introduction of sensor-specific parameters such as bias, scale factor,
and random noise. These factors were tuned to replicate real-world inaccuracies,
allowing for realistic testing of sensor fusion algorithms.

Simulation of environmental effects To enhance realism, environmental ef-
fects such as wave-induced vibrations and ship motion dynamics were incorpo-
rated into the IMU’s data stream. These effects simulate the challenges faced by
real IMUs operating on vessels in dynamic maritime environments. The simulated
data captures the complex interactions between the vessel and its surroundings,
providing valuable input for navigation and control algorithms.

IMU message structure in ROS 2 In the simulation framework, the virtual IMU
uses the sensor_msgs/Imu message format, as defined in ROS. This message
provides the necessary fields to represent the orientation, angular velocity, and
linear acceleration of the vessel. The structure of the message is as follows:

3.3. Simulation Setup 57

List 3.2: IMU Message Definition in ROS 2 Format.
Header header
uint32 seq
time stamp
string frame_id
geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 z
float64 w
float64 [9] orientation_covariance
geometry_msgs/Vector3 angular_velocity
float64 x
float64 y
float64 z
float64 [9] angular_velocity_covariance
geometry_msgs/Vector3 linear_acceleration
float64 x
float64 y
float64 z
float64 [9] linear_acceleration_covariance

Fields description

• Header: Contains metadata such as the timestamp and frame of reference.

– seq: Sequential ID of the message.

– stamp: Timestamp indicating when the data was generated.

– frame_id: Reference frame for the IMU data (e.g., the vessel’s coordi-
nate frame).

• Orientation: A quaternion (x, y, z, w) representing the IMU’s orientation
in the specified frame.

• Angular Velocity: A vector (x, y, z) representing the rotational velocity in
radians per second.

• Linear Acceleration: A vector (x, y, z) representing the acceleration in
meters per second squared.

• Covariances: Three 3×3 covariance matrices (orientation, angular velocity,
and linear acceleration) that quantify the uncertainty of each measurement.

3.3.3.2 Light Detection And Ranging

The LiDAR was integrated into Unity and configured to publish data using the
sensor_msgs/PointCloud2 message format, which is the standard for LiDAR data
in ROS 2.

58 Chapter 3. Experimental Setup

Figure 3.14: 3D model of the Velodyne LiDAR sensor integrated into Unity.

Figure 3.15: Point cloud data generated by the LiDAR sensor, visualized in RViz,
captured in an open water environment. This visualization demonstrates the sen-
sor’s ability to map unobstructed surroundings.

3.3. Simulation Setup 59

Figure 3.16: Point cloud data generated by the LiDAR sensor, visualized in RViz,
captured under a bridge. This visualization highlights the detailed mapping of
complex structures and the simulation’s environmental mapping capabilities.

PointCloud2 message structure in ROS The virtual LiDAR sensor in this project
publishes point cloud data using the sensor_msgs/PointCloud2 message format,
which is a standard in ROS for representing 3D point cloud data.

In this project, the PCD format has been selected due to its suitability for real-
time processing and its ability to efficiently handle modifications to point cloud
data. The PCD format is specifically designed for point cloud storage, offering flex-
ibility in managing both geometric (x, y, z) and attribute data, such as intensity.
Its binary encoding ensures compact storage and high-speed read/write opera-
tions, which are critical for real-time simulations.

One of the objectives of this work is to simulate the effects of adverse weather
conditions, particularly rain, on LiDAR measurements. This involves systemat-
ically adding noise to the original point cloud data by altering the positions (x,
y, z) and intensities of points according to the developed rain simulation model.
The PCD format facilitates this process by allowing seamless integration of mod-
ified data, ensuring consistency and precision during updates. Furthermore, its
compatibility with various tools and libraries, such as Point Cloud Library (PCL),
provides advanced capabilities for efficient data manipulation, visualization, and
analysis. These features make PCD the optimal choice for simulating and analyz-
ing the effects of rain on LiDAR data in a computationally efficient manner.

The structure of the message is as follows:

60 Chapter 3. Experimental Setup

List 3.3: Point Cloud Message Definition in ROS 2 Format.
Header header
uint32 seq
time stamp
string frame_id
uint32 height
uint32 width
sensor_msgs/PointField [] fields
string name
uint32 offset
uint8 datatype
uint32 count
bool is_bigendian
uint32 point_step
uint32 row_step
uint8[] data
bool is_dense

Fields description

• Header: Contains metadata, such as the timestamp and reference frame
for the point cloud data.

– seq: Sequential ID of the message.

– stamp: Timestamp indicating when the point cloud was captured.

– frame_id: The coordinate frame in which the point cloud is expressed
(e.g., the LiDAR sensor’s frame).

• Height and Width: Define the dimensions of the point cloud data. For
unstructured point clouds, height is 1 and width is the number of points.

• Fields: An array of PointField structures, describing the layout of the point
cloud data. Each PointField specifies:

– name: Name of the field (e.g., x, y, z, intensity).

– offset: Byte offset of the field in each point record.

– datatype: Type of data stored in the field (e.g., float32).

– count: Number of elements in the field (e.g., 1 for x, y, and z).

• Data: The actual point cloud data stored as a byte array.

• is_bigendian: Specifies the byte order of the data.

• Point and Row Step: Define the size of a single point and a row of points,
respectively, in bytes.

• is_dense: Indicates whether the point cloud contains invalid (NaN) points.

3.3. Simulation Setup 61

3.3.3.3 Interaction of LiDAR with Unity textures

In this project, the virtual LiDAR sensor interacts with Unity textures to simulate
the intensity of laser returns based on the properties of the surfaces in the en-
vironment. This interaction is facilitated using RGLUnityPlugin, which enables
realistic LiDAR simulations by incorporating texture-based intensity calculations.

Texture integration A texture in Unity represents a 2D image mapped to a
surface (Mesh) in the virtual environment. For the LiDAR, the texture is used to
calculate the intensity of a hit point when a laser beam interacts with a surface.
The texture is expected to be a grayscale image with 8-bit red channel data,
representing the reflectivity of the surface. If the texture is omitted, the intensity
of the return is set to zero, indicating no reflectivity.

62 Chapter 3. Experimental Setup

(a) Clouds (b) Distorted Noise (c) Marble

(d) Musgrave (e) Noise (f) Stucci

(g) Voronoi (h) Wood

Figure 3.17: Various grayscale textures used in the simulation for representing
different surface properties [6].

Calculation of intensity The intensity of a hit point is determined by sampling
the texture at the texture coordinates of the mesh. These coordinates are interpo-
lated from the triangle vertices of the hit point, which are provided during the mesh
creation process. The texture coordinates must be in the range [0, 1]; otherwise,
the texture will be tiled across the surface. This approach ensures that the LiDAR
sensor accurately captures surface properties, such as material reflectivity, and
simulates varying return intensities based on surface characteristics.

3.4. Introducing The Rain Simulation Model 63

Flexibility of texture assignment In Unity, textures are assigned to entities
(e.g., meshes or objects) in the environment. Multiple entities can share the same
texture, allowing for efficient resource usage and consistency in reflectivity across
similar surfaces.

By integrating texture-based intensity calculations, the LiDAR sensor in this
project is able to simulate real-world interactions with different materials and sur-
face properties. This capability is essential for several applications. Additionally,
it supports material differentiation by simulating how the LiDAR reacts to surfaces
with varying reflectivity, such as asphalt, metal, or water.

The texture-based intensity calculations also introduce variability in intensity
returns based on surface textures. This provides critical input for advanced per-
ception and classification algorithms, which rely on intensity patterns for object
detection and material identification. Furthermore, the LiDAR data is vital for test-
ing Simultaneous Localization and Mapping (SLAM) algorithms under realistic
conditions, including scenarios with adverse weather, enhancing the reliability of
navigation and perception systems in diverse environments.

3.4 Introducing The Rain Simulation Model

In this section, we address the technical decisions made in the development of
the rain simulation framework for LiDAR sensors. These decisions are crucial for
accurately modeling the effects of rain on LiDAR scans and ensuring the reliability
of the simulated data for testing and validation purposes.

Rain introduces challenges for LiDAR sensors, such as backscattering, ab-
sorption, and occlusion caused by raindrops [54, 55, 56]. These effects signifi-
cantly impact the performance of LiDAR systems by introducing noise, reducing
signal accuracy, and increasing the complexity of data interpretation. To address
these issues, the framework uses a probabilistic approach to simulate the inter-
action between rain and LiDAR beams, balancing computational efficiency and
physical accuracy.

The following subsections outline the specific considerations and methodolo-
gies used to implement the rain simulation, along with a justification for the mod-
eling choices made.

Rain primarily affects LiDAR sensors in two key ways:

• Optical Interference: Raindrops scatter and absorb the laser beams emit-
ted by the LiDAR, leading to erroneous distance measurements and in-
creased noise in the data.

• Occlusion: Dense rain can obscure objects or features in the environment,
reducing the effective range of the sensor and introducing challenges for
algorithms that depend on clear and consistent data.

64 Chapter 3. Experimental Setup

Evaluating the resilience of perception and Simultaneous Localization and
Mapping (SLAM) algorithms under such conditions is a necessary step toward
creating robust autonomous systems. SLAM algorithms, which depend heavily
on accurate environmental mapping and localization, may fail or produce subop-
timal results when the input data is corrupted by noise caused by rain. A robust
SLAM system must be capable of compensating for these challenges to maintain
reliability.

Simulating rain in a controlled virtual environment provides an efficient and
cost-effective way to test and improve these systems. Unlike real-world testing,
where replicating specific rain conditions can be costly and unpredictable, simu-
lation allows developers to:

• Introduce configurable and repeatable rain scenarios.

• Analyze the specific impact of different rain intensities on LiDAR data.

• Develop and validate sensor fusion and filtering techniques to mitigate rain-
induced noise.

Moreover, incorporating a rain simulation enhances the validity of autonomous
system testing by exposing the algorithms to realistic and diverse conditions. This
ensures that the systems are prepared for the complexities of operating in the real
world, improving their robustness and reliability.

In summary, rain simulation is a critical step in advancing autonomous tech-
nology. It enables developers to identify and address the limitations of perception
systems and SLAM algorithms under adverse weather conditions, contributing to
the overall safety and efficiency of autonomous vehicles in challenging environ-
ments.

3.4. Introducing The Rain Simulation Model 65

3.4.1 Model structure

Scene Objects

Target

LiDAR

HIT

NO - H
IT

Return = (x,y,z)

Return = (0
 or N

aN)

Figure 3.18: Graphical representation of LiDAR return classification.

Workflow of the rain noise simulation process The rain noise simulation
model processes each point in the LiDAR data as follows:

1. Point classification: Each point is classified as a "hit" or "non-hit" based on
its distance from the LiDAR sensor. Points exceeding the maximum distance
threshold are labeled as "non-hits."

2. Calculation of µ (mean number of raindrop interactions): For each point
classified as a "hit," the model calculates µ, which represents the mean
number of raindrop interactions within the laser beam’s volume. This cal-
culation relies on raindrop size distribution equations that account for the
rain intensity, laser beam radius, and distance traveled by the beam. Based
on the µ value, the number of raindrops that intersect the laser beam is
sampled using a Poisson distribution.

3. Evaluation of Impact Intensity: Using the LiDAR’s initial returned inten-
sity and the number of raindrops intersecting the laser beam, the model
evaluates whether the impact is strong enough to be classified as a valid
detection. This process involves RIRD, RIO and DT discussed below.

• If RIRD > DT , the interaction is classified as a false positive, adding
a spurious point to the cloud.

• If RIO > DT and RIRD is negligible, the point is classified as a regular
detection.

66 Chapter 3. Experimental Setup

• If neither RIRD nor RIO exceed DT , the point is excluded as a false
negative.

4. Position adjustment for impacted points: For points that interact with a
significant number of raindrops, the position is adjusted slightly to reflect the
scattering effects caused by water droplets.

5. Final intensity adjustment: The final intensity of the point is adjusted using
Beer-Lambert’s Law to account for the scattering and absorption effects.
This ensures the intensity is consistent with physical reflectivity properties.

6. Output the modified point cloud: After processing all points, the model
outputs a modified point cloud containing:

• Normal returns: Points that represent valid detections with their ad-
justed intensity and position.

• False returns: Simulated points caused by raindrop interactions, with
adjusted intensity and position to reflect the scattering effects.

• Eliminated points: Points removed from the cloud due to high at-
tenuation caused by rain, where the intensity fell below the detection
threshold.

The model dynamically adjusts rain intensity (RR) during simulation, allowing
for real-time changes in weather conditions. Parallel processing using OpenMP
[57] ensures computational efficiency, enabling the simulation to handle large
point clouds in real-time.

The noisy point cloud generated by the model retains the same format and
frame rate as commercial LiDAR sensors, making it suitable for integration into
autonomous vehicle testing platforms. The output simulates realistic environmen-
tal effects, including attenuation, scattering, and false detections caused by rain-
fall.

3.4.2 Detailed technical justification

The proposed model meticulously addresses these challenges through a combi-
nation of deterministic and probabilistic approaches [58, 59, 60, 15, 61, 62, 63,
64].

To achieve this, the rain model incorporates key factors such as drop size
distribution, beam interaction modeling, and dynamic rain intensity variations, en-
suring a realistic representation of real-world behavior in the simulated point cloud
data.

3.4. Introducing The Rain Simulation Model 67

3.4.2.1 Mathematical representation of rain effects

Drop size distribution: The model uses the Marshall-Palmer exponential dis-
tribution to define raindrop sizes:

N(D) = N0 · exp(−ΛD), (3.1)

where:

• N(D) represents the number of raindrops per unit volume with a diameter
D (units: m−3 mm−1),

• D is the raindrop diameter (units: mm),

• N0 is the intercept parameter, typically 8000m−3 mm−1 for rain, and

• Λ is the slope parameter (units: mm−1), which is a function of rain intensity
R (units: mm/h):

Λ = 41 ·R−0.21. (3.2)

To calculate the total density of raindrops per unit volume, Ntotal, we integrate
N(D) over the range of possible raindrop diameters:

Ntotal =

∫ Dmax

Dmin

N(D) dD, (3.3)

where:

• Dmin and Dmax are the minimum and maximum diameters of raindrops con-
sidered (units: mm) [12].

This integral is performed because N(D) describes the droplet density as a
function of diameter. By integrating over all possible droplet sizes, we obtain
the total number of raindrops per unit volume (m−3), which can then be used to
calculate the expected number of raindrops within the LiDAR beam.

Beam interaction and probabilistic modeling: The expected number of rain-
drops, µ, within a LiDAR beam path is calculated as:

µ = Vbeam ·Ntotal, (3.4)

where:

• Vbeam is the volume of the LiDAR beam (units: m3), approximated as:

Vbeam = πr2beam · distance, (3.5)

where:

68 Chapter 3. Experimental Setup

– rbeam is the radius of the beam (units: m),

– distance is the range of the beam (units: m).

The Poisson distribution is used to model the number of raindrops inter-
cepted by the LiDAR beam:

p(n) =
µn exp(−µ)

n!
, (3.6)

where:

• p(n) is the probability of encountering n raindrops (dimensionless),

• n is the number of raindrops (dimensionless), and

• µ is the expected number of raindrops (dimensionless, as demonstrated
above).

This distribution is particularly suitable because:

• Rare Events: The interaction between the LiDAR beam and individual rain-
drops is infrequent, given the relatively low droplet density compared to the
beam’s volume. The expected number of raindrops, µ = Vbeam ·Ntotal, is di-
mensionless, resulting from the multiplication of the beam’s volume (in m3)
and the total droplet density (in m−3).

• Independence of Events: Each droplet’s presence along the beam path is
independent of others, as their distribution within the atmosphere is random
and uniform. This independence aligns with the assumptions of the Poisson
distribution, making it a suitable model for this scenario.

The attenuation of the LiDAR beam in rain is governed by the Lambert-Beer
law [65, 66, 42, 67], which models the exponential reduction of signal intensity as:

Pr(z) = P0 · exp
(
−2

∫ z

0

α(r)dr

)
, (3.7)

where Pr(z) is the received power at distance z, P0 is the initial power, and α(r)
is the attenuation coefficient at a given distance r.

This model accounts for the fact that as the LiDAR beam travels through the
atmosphere in rainy conditions, it encounters water droplets that scatter and ab-
sorb the beam’s energy. The attenuation coefficient α(r) quantifies the loss of
intensity per unit distance due to these interactions. It depends on the properties
of the rain, including the size, shape, and distribution of raindrops, as well as the
wavelength of the LiDAR beam.

The integral
∫ z

0
α(r)dr represents the cumulative effect of attenuation over the

beam’s path from the sensor to the distance z. Since the LiDAR beam travels

3.4. Introducing The Rain Simulation Model 69

both to the target and back to the sensor, the total attenuation is doubled, hence
the factor of 2 in the exponent.

This relationship highlights the exponential decay. The received power Pr(z)
decreases exponentially with distance, meaning that as the beam travels further,
the signal weakens more rapidly due to the accumulation of scattering and ab-
sorption effects.

The attenuation coefficient α comprises scattering (µs) and absorption (µa)
components:

α = µs + µa. (3.8)

The coefficients µs and µa are derived based on the raindrop size distribution and
material properties, as shown in Table 3.2.

Rainfall Rate (mm/h) Scattering Coefficient µs (m−1) Total Attenuation Coefficient α (m−1)
5.0 0.0013 0.00132

12.5 0.0024 0.00244
25.0 0.0038 0.00387
100.0 0.0097 0.00991

Table 3.2: Attenuation Coefficients for Different Rainfall Rates

The table illustrates the relationship between rainfall intensity and attenuation
coefficients, highlighting the significant impact of heavy rain on signal loss. These
coefficients were derived from experimental data and theoretical analyses based
on the work in [61].

3.4.2.2 Illustrative models of light attenuation in rain

The two diagrams presented in Figures 3.19 and 3.20 provide a comprehensive
visual interpretation of the Lambert-Beer law and its practical implications for Li-
DAR signal attenuation in rain.

70 Chapter 3. Experimental Setup

I0
Incident

Light

I

Transmitted Light

X

Figure 3.19: Theoretical Model of Absorption and Scattering Effects.

Figure 3.19 illustrates the theoretical framework for attenuation. The diagram
highlights the Lambert-Beer equation, where the initial intensity I0 diminishes as
the beam passes through an absorbing medium of thickness x. This exponential
behavior is fundamental for quantifying the extent of attenuation. The linear re-
lationship between ln(I) and the distance x is particularly useful for deriving the
coefficients µa and µs through experimental calibration.

3.4. Introducing The Rain Simulation Model 71

Figure 3.20: Laser intensity vs distance under different rain conditions. Data
obtained from the rain simulation model.

Figure 3.20 shows the reduction in LiDAR signal intensity as a function of
distance for various rainfall rates. This chart emphasizes the exponential decay
described by the Lambert-Beer law, where higher rainfall rates (e.g., 50 mm/h
and 100 mm/h) correspond to a steeper decline in signal intensity. The attenu-
ation is primarily influenced by the scattering and absorption properties of water
droplets, which directly affect the coefficients µs and µa. The visualization aids in
understanding the practical implications for LiDAR systems, where the transmitted
power Pr(z) determines the effective detection range under varying environmen-
tal conditions.

Point classification and modification process Given the number of water
droplets intersected by each laser beam and the corresponding intensity loss
along its path, each point in the LiDAR cloud is classified based on specific crite-
ria as Regular Detection, False Negative, or False Positives.

This classification process not only reflects the impact of rain on LiDAR per-
formance but also accounts for spatial adjustments. For every point, the position
is modified based on the cumulative impact of the rain droplets along the laser’s
path. The degree of adjustment is proportional to the scattering effect caused
by the droplets, which is derived from the calculated interaction rate (µ) and the
number of droplets interacting with the beam. This ensures that the final position
reflects the physical deflection caused by rain-induced interference.

72 Chapter 3. Experimental Setup

3.4.2.3 Integration with parallel processing

To achieve real-time simulation, the model employs parallel processing using
OpenMP. Each point in the LiDAR cloud is processed independently, with key
tasks including:

• Classifying points as hits or non-hits based on distance thresholds.

• Calculating the interaction probabilities using the Poisson distribution.

• Modifying point coordinates and intensities to simulate the effects of rain.

This parallelized approach ensures compatibility with high-frame-rate LiDAR sys-
tems.

3.4.2.4 Dynamic rain intensity adjustment

The rain model supports dynamic adjustments to rain intensity during simulation.
This feature enables testing under varying weather conditions, with the rain rate
R updated in real time. The system recalculates the raindrop distribution and
interaction probabilities accordingly, ensuring consistency in the simulated noise
effects.

This detailed justification highlights the technical foundations and innovations
of the proposed rain noise model, ensuring its relevance for autonomous vehicle
testing and validation in adverse weather conditions.

3.4.3 Model assumptions

The proposed rain simulation model incorporates several assumptions to balance
complexity and computational efficiency. These assumptions simplify the imple-
mentation while maintaining a high degree of realism for testing autonomous ve-
hicle LiDAR systems under rainy conditions. Below are the key assumptions and
their implications:

Uniform rainfall distribution The model assumes that rainfall is uniformly dis-
tributed throughout the simulation area. This simplification ensures consistent
interactions between LiDAR beams and raindrops, avoiding the need for com-
plex spatial variability calculations. While this assumption aligns with standard
meteorological models for moderate rainfall, it may not capture localized varia-
tions in rain intensity observed in real-world conditions such as wind-driven rain
or microbursts.

3.4. Introducing The Rain Simulation Model 73

Independent raindrop interactions Each raindrop’s interaction with a LiDAR
beam is treated as an independent event. This assumption allows the use of
probabilistic models, such as the Poisson distribution, to calculate the likelihood
of raindrop encounters within the beam path. It simplifies the computation but
does not account for potential clustering effects or correlated raindrop behaviors.

No beam divergence The LiDAR beam is modeled as a cylindrical path with
a constant radius along its length. This ignores beam divergence, which occurs
in real-world LiDAR systems due to diffraction and optical design. While this
assumption simplifies volume calculations for raindrop interactions, it may under-
estimate the effects of scattering and attenuation at longer distances.

Fixed detection thresholds The model uses fixed detection thresholds for sig-
nal intensity to classify points as valid detections, false positives, or false neg-
atives. This does not consider the dynamic adjustments that real-world LiDAR
systems might apply based on environmental conditions or adaptive algorithms.

Homogeneous raindrop properties Raindrop sizes and optical properties are
derived from the Marshall-Palmer distribution, assuming homogeneous material
properties for all raindrops. This neglects potential variations in raindrop compo-
sition (e.g., pollutants or mixed precipitation) that could affect their scattering and
absorption characteristics.

3.4.3.1 Impact of assumptions

These assumptions enable the model to efficiently simulate large-scale point
clouds in real time while preserving key rain effects such as attenuation, scat-
tering, and noise. However, they introduce limitations that may affect the model’s
accuracy in highly variable or extreme weather conditions. Future work could
address these limitations by incorporating:

• Spatially variable rain intensity to simulate localized weather phenomena.

• Beam divergence effects to enhance the realism of scattering and attenua-
tion.

• Dynamic detection thresholds to mimic real-world LiDAR system adaptabil-
ity.

By understanding and addressing these assumptions, the model can serve as
a robust foundation for testing and improving autonomous vehicle perception in
adverse weather.

74 Chapter 3. Experimental Setup

3.4.4 Validation model

Validating the proposed rain simulation model is critical to ensure its accuracy
and effectiveness in replicating real-world conditions. The validation process in-
volves comparing the simulated outputs against theoretical predictions, exper-
imental data, and real-world observations. Below are the key approaches for
validation:

3.4.4.1 Qualitative assessment

Beyond numerical metrics, visual inspection of simulated point clouds provides
valuable qualitative insights. This involves identifying patterns of false positives
and negatives within the simulated point cloud and observing the spatial distribu-
tion of noise to evaluate its consistency with real-world rain effects.

3.4.4.2 Performance testing

Real-time performance is crucial for the model’s integration into simulation envi-
ronments. Validation involves:

• Measuring the computation time per frame to ensure compatibility with high-
frame-rate LiDAR systems.

• Evaluating the scalability of the model for large-scale point clouds.

• Ensuring that the simulation maintains real-time performance under varying
rain intensities.

Chapter 4

Experiments and results

Contents
4.1 Initial Tests and Validation . 76

4.1.1 Simulation setup . 76

4.1.2 Qualitative results . 77

4.1.3 Quantitative metrics based on raindrops hit distribution . . 83

4.1.4 Publication rate analysis 85

4.2 Overall Results of the proyect 87

4.3 Validation against Real-World Data 87

4.4 Summary of Project Results and Conclussion 87

75

76 Chapter 4. Experiments and results

4.1 Initial Tests and Validation

To evaluate the performance and realism of the proposed rain simulation model,
a series of initial tests were conducted. These tests aimed to validate the model’s
ability to accurately replicate the effects of rain on LiDAR point clouds and assess
its computational efficiency under real-time constraints.

4.1.1 Simulation setup

The initial tests were performed using the simulated environment with the follow-
ing configuration:

• LiDAR Specifications: A virtual 128-channel LiDAR sensor with a maxi-
mum range of 100 meters and an angular resolution of 0.2 degrees (see
Figure 4.1).

• Rain Intensity: Rainfall rates ranging from 5 mm/h (light rain) to 100 mm/h
(heavy rain).

• Point Cloud Parameters: Point clouds generated at 10 frames per second,
consistent with real-world LiDAR systems. Each frame contains approxi-
mately 28,800 points, resulting in a total of 288,000 points per second at full
360-degree coverage.

4.1. Initial Tests and Validation 77

a

b

c

d

e

Figure 4.1: LiDAR sensor configuration showing details of the Velodyne VLP16
parameters in the simulation. a)Sensor model, b) Noise addition, c) Resolution
parameters, d) Divergence, e) Range settings.

4.1.2 Qualitative results

To evaluate the effectiveness and realism of the rain simulation model on LiDAR
systems, a controlled test scene was utilized. This scene was carefully designed
to obtain different returns, including a variety of objects such as buildings, vehi-
cles, and different objects. The test environment provides a structured layout to
analyze the impact of rain intensity on LiDAR performance.

78 Chapter 4. Experiments and results

Figure 4.2: Test scene visualized in Foxglove Studio [7] with no rain. The intensity
gradient ranges from 0 (red) to 255 (green), highlighting the variation in LiDAR
return intensities.

Figure 4.2 illustrates the test scene used in the experiments, showcasing the
spatial arrangement, object diversity, and the visual representation of LiDAR in-
tensity values critical for comprehensive evaluation. Each object is configured
with one of the textures showed on 3.17.

Incorporating rain into the simulation Visual inspection of the simulated point
clouds under varying Rain Rates (RR) revealed the following patterns and behav-
iors:

4.1. Initial Tests and Validation 79

Figure 4.3: Rain Rate: 5-25 mm/h.

80 Chapter 4. Experiments and results

Figure 4.4: Rain Rate: 25-50 mm/h.

4.1. Initial Tests and Validation 81

Figure 4.5: Rain Rate: 50-75 mm/h.

82 Chapter 4. Experiments and results

Figure 4.6: Rain Rate: 75-100 mm/h.

• Points classified as "non-hits" were redistributed with realistic noise pat-
terns, avoiding clusters or artifacts, as observed across all Rain Rates.

• False positives caused by raindrop reflections were distributed spatially along
the beam path, increasing in density with higher Rain Rates, consistent with
expected rain effects.

• False negatives were more prominent in objects partially obscured by dense
rain, especially under heavy rain conditions (RR > 50 mm/h), replicating
real-world attenuation phenomena.

Figures 4.3 through 4.6 illustrate the simulated LiDAR point clouds under in-
creasing Rain Rates (RR), ranging from 5-25 mm/h to 75-100 mm/h. These fig-
ures highlight how higher rain intensities affect the LiDAR data, introducing more
noise, false positives, and attenuation. The intensity gradient, ranging from 0 (red)
to 255 (green), represents the variation in return intensities across all scenarios.

4.1. Initial Tests and Validation 83

4.1.3 Quantitative metrics based on raindrops hit distribution

To further analyze the rain simulation model, we evaluated the number of rain-
drops in the LiDAR beam path, which is derived from using µ as the mean of
the Poisson distribution. This parameter reflects the variability in the number of
raindrop interactions for each laser beam, capturing the stochastic nature of rain
interactions and their influence on the LiDAR’s performance.

The experiment involved counting the number of raindrops that impacted each
laser beam of the LiDAR while sweeping the Rain Rate (RR) from 5 to 100 mm/h.
The results are visualized in Figure 4.7.

Figure 4.7: Number of raindrops in the LiDAR beam path distribution across a full
sweep of RR from 5 to 100 mm/h. The x-axis represents the number of raindrops
that intersect a single laser beam, while the y-axis indicates the total count of
laser beams experiencing that specific number of raindrop interactions.

The orange graph represented earlier provides a full sweep of RR values from
5 to 100 mm/h, offering an overview of raindrop impacts across a wide range. In
contrast, the yellow graphs, presented subsequently, focus on narrower ranges,
enabling a more detailed analysis of raindrop behavior and offering additional
insights into the effects of rain intensity on hit distribution.

84 Chapter 4. Experiments and results

Figure 4.8: Raindrop hit distribution for Rain Rate (RR) in the range of 5-25 mm/h.

Figure 4.9: Raindrop hit distribution for Rain Rate (RR) in the range of 25-50
mm/h.

4.1. Initial Tests and Validation 85

Figure 4.10: Raindrop hit distribution for Rain Rate (RR) in the range of 50-75
mm/h.

Figures 4.8 through 4.10 illustrate how increasing rain intensity shifts the rain-
drop hit distribution towards higher values. This shift represents a greater number
of raindrops encountered within the beam path, increasing the noise and atten-
uation effects observed in the LiDAR data. These results provide quantitative
support for the model’s realism in simulating rain conditions.

4.1.4 Publication rate analysis

The proposed rain simulation model is designed with computational efficiency in
mind to ensure compatibility with real-time LiDAR systems. This section highlights
the technical characteristics of the algorithm and evaluates its performance in
terms of processing time and output frequency.

UNITY

VELODYNE 16

ROS2 Framework

/VLP16/velodyne_points (10Hz)

Rain Simulation
Model /noisy_lidar_pointcloud (9.98Hz)

Unity - ROS2
bridge

Figure 4.11: Flowchart illustrating the real-time testing process, including the
Unity environment, Velodyne VLP-16 LiDAR, ROS 2 framework, and the rain sim-
ulation model. The system bridges Unity and ROS 2 to evaluate pointcloud pub-
lication rates under simulated rain conditions.

86 Chapter 4. Experiments and results

4.1.4.1 Technical characteristics

The algorithm leverages the following features to achieve high performance:

• Parallel Processing: The use of OpenMP enables parallel computation of
point cloud data, allowing the simulation to efficiently process large-scale
LiDAR point clouds.

• Optimized Data Structures: Custom data structures and memory-efficient
operations are employed to minimize computational overhead.

• Dynamic Rain Adjustment: The model supports real-time updates to rain
intensity, recalculating relevant parameters without interrupting the simula-
tion.

4.1.4.2 Publication frequency

To validate the real-time capabilities of the algorithm, the frequency of the rainy
pointcloud topic was measured during the simulation in the ROS 2 environment.
The system was tested on a computational platform with the following specifica-
tions:

• Processor: 12th Gen Intel® Core™ i9-12950HX × 24.

• Memory: 64.0 GiB RAM.

• System: Dell Inc. Precision 7670.

The LiDAR system operates at a native frequency of 10 Hz (Table 4.1). Under
the rain simulation model, the publication frequency of the rainy pointcloud topic
was observed to be 9.98 Hz (Table 4.2). This minor reduction in frequency, corre-
sponding to the rate at which the pointcloud messages are published in ROS 2,
is caused by the computational overhead introduced by the rain simulation model
applied to the LiDAR system. The overhead, approximately 0.2%, is considered
acceptable for real-time applications.

Average Rate (Hz) Min (s) Max (s) Std Dev (s) Window
9.999 0.094 0.105 0.00436 11
10.009 0.093 0.106 0.00484 22
10.033 0.089 0.110 0.00538 33
9.998 0.089 0.110 0.00554 43
10.018 0.089 0.110 0.00523 54
10.015 0.089 0.110 0.00483 64

Table 4.1: Publishing rate of the Velodyne 16 ROS 2 topic simulated in Unity
and published without modifications. For detailed terminal output, refer to Ap-
pendix A.16.

4.2. Overall Results of the proyect 87

Average Rate (Hz) Min (s) Max (s) Std Dev (s) Window
9.940 0.095 0.103 0.00309 11
9.963 0.095 0.104 0.00326 21
9.996 0.095 0.104 0.00353 32
9.993 0.095 0.104 0.00362 42
9.988 0.095 0.104 0.00352 52
9.990 0.095 0.104 0.00353 63
9.992 0.094 0.104 0.00349 74

Table 4.2: Publishing rate of the Velodyne 16 rainy points after applying the Rain
Model. For detailed data, refer to Appendix A.17.

The results demonstrate that the proposed algorithm maintains near-native
performance levels while simulating complex rain effects and achieves publication
frequencies comparable to commercial LiDAR systems. It is important to note that
the reported average is not based solely on the initial data points but rather on a
significantly larger dataset.

4.2 Overall Results of the proyect

4.3 Validation against Real-World Data

The simulated point clouds were visually compared to real LiDAR data collected
under rainy conditions. Key observations from this qualitative comparison include:

• Similar visual patterns of noise, including false positives and negatives, in
both simulated and real-world data.

• Comparable attenuation effects and intensity reductions observed across
various rainfall rates.

A more in-depth review of the validation process using real-world rain models
is discussed in Appendix B.

4.4 Summary of Project Results and Conclussion

This section provides an overview of the global outcomes achieved throughout
the project, highlighting the main findings and showcasing visual representations
of the results. The images and visualizations presented here illustrate the per-
formance and impact of the rain simulation model on LiDAR data processing on
real-time.

88 Chapter 4. Experiments and results

Figure 4.12: Visualization of the LiDAR points during a simulated scene in Unity,
showing the interaction between the laser beams and the environment.

Figure 4.13: Point cloud published on the /VLP16/velodyne_points topic without
applying the rain model, showcasing the LiDAR’s original output in a simulated
environment.

4.4. Summary of Project Results and Conclussion 89

Figure 4.14: Point cloud published on the /noisy_lidar_pointcloud topic after
applying the rain model to the /VLP16/velodyne_points data, demonstrating the
simulated rain effects on LiDAR perception.

The entire process, including scene management in Unity, point cloud publica-
tion to ROS 2, and rain model simulation, is executed simultaneously in real-time.
This seamless integration ensures the system’s suitability for testing autonomous
driving applications under dynamic and adverse weather conditions.

Part III

Conclusions and Future Work

91

Chapter 5

Conclusions

Evaluation of Results with Respect to Objectives

Throughout the course of this project, significant progress was achieved in ad-
dressing the primary objectives outlined at the beginning. Specifically, the project
successfully developed a simulation environment that accurately replicates real-
world navigation conditions for a small sensorised vessel traversing the canals of
Berlin. This environment integrates key components, including an IMU and LiDAR
sensors, both of which were seamlessly integrated with the ROS 2 framework to
ensure robust communication and real-time data processing.

One of the key achievements of this project was the implementation of a novel
rain simulation model, which effectively replicates the impact of rainfall on the Li-
DAR sensor. This model introduces noise and attenuation effects consistent with
real-world rain conditions, enhancing the realism and utility of the simulation. By
enabling both visual and quantitative evaluation of sensor data under varying rain
intensities, the model provides a valuable tool for autonomous navigation system
testing. The successful simulation of rain is a significant step forward; however,
the simulation currently lacks representations of other environmental factors, such
as wind, fog, or snow, which are equally relevant for real-world navigation scenar-
ios.

The results obtained from the experiments provide a comprehensive under-
standing of the rain simulation model’s impact on LiDAR performance. The quan-
titative metrics demonstrate how increasing rain intensity directly affects the Li-
DAR point clouds. Figures 4.8 through 4.10 illustrate a clear shift in the raindrop
hit distribution towards higher values as rain intensity increases. This shift signi-
fies a greater number of raindrops intersecting the LiDAR beam paths, which in
turn amplifies noise and attenuation effects. These findings quantitatively validate
the realism of the rain simulation model in replicating adverse weather conditions
and their effects on LiDAR data fidelity.

The qualitative analysis corroborates these quantitative findings. Visual in-

93

94 Chapter 5. Conclusions

spection of the point clouds under different rain intensities revealed degradation
patterns consistent with real-world behavior. Specifically, point clouds generated
under heavy rain showed reduced point density and increased angular scattering,
both of which align with expectations for LiDAR systems operating in rainy condi-
tions. This visual confirmation supports the credibility of the model in simulating
realistic rain effects.

The performance tests further validate the efficiency and reliability of the pro-
posed model in maintaining near-real-time performance. The publication fre-
quency of the rainy pointcloud topic was consistently measured at 9.98 Hz, with
a standard deviation below 0.0035 Hz across multiple runs. This represents a
negligible computational overhead of 0.2%, demonstrating that the model is well-
optimized for high-performance hardware. This consistency is essential for real-
time applications, where stable and predictable sensor outputs are crucial for
autonomous systems.

These achievements directly address the primary objective of creating a ver-
satile and realistic simulation model for testing sensorized vehicles under diverse
conditions. The proposed solution effectively bridges the gap in the availabil-
ity of datasets and environments required for evaluating autonomous navigation
systems and Simultaneous Localization and Mapping (SLAM) algorithms. The
results, supported by visual and quantitative analyses, highlight the simulation’s
ability to emulate real-world conditions and its consistency in providing reliable
sensor data.

Additionally, the modular design of the system ensures that the simulation
environment can be expanded in the future. This includes the integration of new
sensor modalities, such as cameras or radar systems, as well as the inclusion
of more complex environmental factors. These potential enhancements would
further broaden the scope and applicability of the project, enabling researchers
to test and validate autonomous systems in increasingly complex scenarios.

Conclusion In conclusion, this project has made a significant contribution to
addressing the challenges in autonomous navigation and SLAM research. By
developing a robust simulation environment and incorporating a rain simulation
model, it provides a practical and realistic solution for testing and validating au-
tonomous systems. While limitations remain, particularly in the need for validation
against real-world rain data and the inclusion of additional weather conditions,
the proposed future enhancements offer promising directions for expanding the
model’s scope. This work lays a solid foundation for continued research and inno-
vation, offering researchers and engineers a powerful tool to push the boundaries
of autonomous navigation and mapping technologies.

5.1. Limitations and Future Work 95

5.1 Limitations and Future Work

While the project demonstrates the ability to accurately simulate rain effects and
adapt to dynamic environments, certain limitations remain. For instance, the rain
simulation has not yet been validated against real-world rain data. This step is
critical for ensuring the model’s fidelity and for aligning its outputs with real-world
conditions. Additionally, the simulation does not currently include other weather
phenomena, such as wind, fog, or snow, which could have significant impacts on
sensor performance. Incorporating spatial and temporal variability in the rainfall
model could also improve the simulation’s realism and its applicability across a
broader range of scenarios.

Future work could focus on addressing these limitations by validating the rain
simulation against physical LiDAR data collected under real rainy conditions and
by expanding the range of environmental factors simulated. The modularity of
the current framework allows for the seamless integration of additional sensors,
such as cameras, radar, or ultrasonic devices, which would enable comprehen-
sive multimodal testing. Investigating the specific effects of these environmental
variables on different sensor modalities and their interaction would further en-
hance the simulation’s value for autonomous navigation and SLAM research.

Moreover, extending the simulation to support complex scenarios, such as ur-
ban environments with pedestrian and vehicle traffic or off-road conditions, would
make the tool even more versatile. By doing so, researchers and engineers could
fine-tune their systems to operate reliably under a wide range of conditions, ulti-
mately contributing to safer and more efficient autonomous navigation.

Finally, the collaborative potential of this framework is significant. Its modular
and extensible nature opens the door for contributions from the research commu-
nity, enabling the creation of a shared repository of scenarios and datasets. This
collective effort would drive further innovation and enable autonomous systems
to tackle increasingly complex challenges in navigation and mapping.

Part IV

Appendix

97

Appendix A

Configuration and parameters of
the simulation tool

Contents
A.1 World settings . 100

A.1.1 Directional light configuration 100

A.1.2 HDRP asset configuration 101

A.1.3 Ocean settings (general) 102

A.1.4 Ocean settings (deformation and appearance) 103

A.1.5 Ocean settings (foam and miscellaneous) 104

A.1.6 Ocean volume configuration 105

A.1.7 Map settings . 106

A.1.8 Hierarchy overview . 107

A.1.9 AURORA configuration 108

A.1.10 Propulsion system configuration 109

A.1.11 IMU configuration . 111

A.1.12 LiDAR configuration (Velodyne VLP-16) 112

A.2 Performance Information . 115

99

100 Apéndice

A.1 World settings

A.1.1 Directional light configuration

Figure A.1: Configuration of the directional light in the simulation environment.

A.1. World settings 101

A.1.2 HDRP asset configuration

Figure A.2: HDRP asset configuration for rendering settings.

102 Apéndice

A.1.3 Ocean settings (general)

Figure A.3: General settings for the ocean surface in the simulation.

A.1. World settings 103

A.1.4 Ocean settings (deformation and appearance)

Figure A.4: Deformation and appearance settings for the ocean in the simulation.

104 Apéndice

A.1.5 Ocean settings (foam and miscellaneous)

Figure A.5: Foam and miscellaneous settings for the ocean in the simulation.

A.1. World settings 105

A.1.6 Ocean volume configuration

Figure A.6: Ocean volume profile configuration for environmental effects.

106 Apéndice

A.1.7 Map settings

Figure A.7: General Westhafen map configuration and material settings in the
simulation.

A.1. World settings 107

A.1.8 Hierarchy overview

Figure A.8: Detailed hierarchy of components in the AURORA simulation envi-
ronment.

108 Apéndice

A.1.9 AURORA configuration

Figure A.9: Configuration of the Ground Truth publisher in the AURORA environ-
ment.

A.1. World settings 109

A.1.10 Propulsion system configuration

Figure A.10: Propulsion system settings for the AURORA vessel.

110 Apéndice

Figure A.11: ROS-based propulsion configuration in the simulation.

A.1. World settings 111

A.1.11 IMU configuration

Figure A.12: Configuration of the IMU sensor and ROS 2 publisher.

112 Apéndice

A.1.12 LiDAR configuration (Velodyne VLP-16)

Figure A.13: General configuration of the Velodyne VLP-16 LiDAR sensor.

A.1. World settings 113

Figure A.14: ROS 2 publisher and visualization settings for the Velodyne VLP-16.

114 Apéndice

Figure A.15: Detailed material and rendering settings for the Velodyne VLP-16
model.

A.2. Performance Information 115

A.2 Performance Information

Figure A.16: Publishing rate of the Velodyne 16 simulated in Unity.

Figure A.17: Publishing rate of the Velodyne 16 rainy points after applying the
Rain Model.

Appendix B

Rain Model Validation Campaign

Contents
B.1 Introduction . 117

B.2 Review of Validation Methods for Rain Simulation Models . . 118

B.2.1 Validation approaches in the literature 118

B.3 Validation Methodology . 119

B.3.1 Validation setup . 120

B.3.2 Data acquisition system 121

B.3.3 Data collection . 123

B.4 Validation Metrics . 125

B.4.1 Comparison and analysis 127

B.1 Introduction

This appendix presents the preliminary framework for validating the rain simula-
tion model developed in this thesis against real-world rain conditions. The objec-
tive of this campaign is to assess the fidelity and accuracy of the simulated rain
effects by comparing them with data collected from actual LiDAR sensor read-
ings under varying rainfall scenarios. While the experimental data collection is
still pending due to the necessity of suitable weather conditions, this document
outlines the foundational work already completed, including the literature review,
experimental setup, validation framework, and proposed evaluation metrics.

The validation of simulation models with real-world data is a critical step to en-
sure that the developed framework provides realistic and reliable results. The rain
model’s accuracy will be tested by analyzing its ability to replicate the behavior of
LiDAR signals in rain, considering factors such as signal attenuation, point cloud
density reduction, and noise levels.

117

118 Apéndice

This appendix is structured as follows:

• Section B.2: A review of relevant studies that have validated environmental
simulation models using real-world data, with a particular focus on LiDAR
sensors.

• Section B.3: A detailed description of the experimental setup, including the
physical configuration of the LiDAR sensor, the environmental conditions
required for data collection, and the criteria for selecting test sites.

• Section B.4: An overview of the validation framework, including the metrics
and statistical methods that will be used to compare simulated and real-
world results.

This document serves as a placeholder and roadmap for the full validation
campaign, which will be completed once the required real-world data is collected.
The findings from this campaign will play a crucial role in refining the simulation
model and advancing the understanding of LiDAR performance under adverse
weather conditions.

B.2 Review of Validation Methods for Rain Simula-
tion Models

The validation of simulation models for rain effects on LiDAR systems is a critical
step in ensuring their reliability and accuracy. However, existing approaches in the
literature differ significantly in the type and rigor of their validation methods. This
section reviews various validation methodologies, categorizing them into qualita-
tive or quantitative approaches, and highlights their strengths and limitations.

B.2.1 Validation approaches in the literature

Several works focus on validating rain simulation models for sensors, but their
approaches vary widely in methodology and rigor. Hasirlioglu and Riener [59]
proposed an early model-based approach to simulate rain effects on automotive
surround sensors, including LiDAR, radar, and cameras. However, the validation
in this work was primarily qualitative, relying on visual assessments to judge the
plausibility of the simulated effects. While this provides useful insights into the
visual fidelity of the simulation, the lack of quantitative metrics and real-world data
limits the robustness of their validation, particularly for LiDAR-specific effects like
point cloud degradation.

Building on this foundation, Hasirlioglu and Riener [58] expanded their ap-
proach by incorporating data from a real rain simulation facility alongside virtual

B.3. Validation Methodology 119

rain simulations. This later work included a more rigorous quantitative valida-
tion, employing metrics such as Match Distance to compare cumulative distance
distributions, Structural Similarity Index to evaluate image similarity for grayscale
camera data, and Mean Squared Error to compare radar profiles. However, while
their validation for radar and camera data was extensive, their treatment of Li-
DAR remained limited, focusing primarily on general signal attenuation rather
than LiDAR-specific characteristics like point density or noise effects.

Espineira et al. [63] introduced a probabilistic rain model integrated into real-
time simulations using Unreal Engine. Their validation is primarily qualitative,
relying on visual assessments of the realism of simulated scenes and controlled
virtual tests to demonstrate the model’s capabilities. However, the absence of
comparisons to real-world data limits the ability of their model to reliably represent
real rain effects on LiDAR sensors.

Teufel et al. [68] simulated various adverse weather conditions, including rain,
snow, and fog, to generate extended datasets for neural network training. Their
validation focused on evaluating the robustness of object detection algorithms
trained with these datasets, emphasizing improvements in neural network perfor-
mance. However, this approach does not include a direct comparison between
simulated and real rain effects.

Hahner et al. [15] concentrated on fog simulation but provided a robust vali-
dation framework that could inform future rain simulation studies. Their approach
involved a quantitative comparison of simulated fog data with real-world measure-
ments using metrics such as signal attenuation and SNR. While focused on fog
rather than rain, this direct validation with real-world data makes their methodol-
ogy one of the more rigorous reviewed.

Haider et al. [64] present a novel approach for modeling the effects of rain and
fog on LiDAR sensor performance, integrating simulations based on Mie scat-
tering theory. Their model enables the analysis of signal attenuation and SNR in
both time domains and point cloud data. The validation process includes quantita-
tive comparisons between simulated and real measurements conducted in con-
trolled environments, utilizing KPIs such as detection rate (DR), false detection
rate (FDR), and distance error (derror). Results demonstrate a strong correlation
between simulations and real-world measurements when raindrop distributions
are consistent, with low MAPE, such as 2.1% for DR and 14.7% for FDR. This
approach integrates high-fidelity simulations with experimental measurements,
providing a rigorous framework for validating rain models in virtual environments.

B.3 Validation Methodology

To validate the rain simulation model, a structured approach is implemented,
starting with the configuration of the experimental setup, followed by data col-
lection, and concluding with the use of quantitative metrics to compare simulated

120 Apéndice

and real-world results.

B.3.1 Validation setup

The validation experiment uses a state-of-the-art LiDAR sensor, the Ouster OS0,
configured to replicate real-world applications. Key specifications of the sensor
include (see Table B.1):

Table B.1: Specifications of the Ouster OS0 LiDAR Sensor

Specification Value

Horizontal (FoV) 360°

Vertical (FoV) 90°

Angular Resolution 0.35° (horizontal), 0.7° (vertical)

Maximum Range 120 meters

Scanning Frequency 10 Hz

The details of the sensor setup and environment are as follows:

B.3.1.1 LiDAR configuration

To implement the rain model on a real sensor (Ouster OS0), it was necessary to
adjust several parameters. In simulation, the sensor placed in the Unity environ-
ment provides all the required information, including the orientation (azimuth and
elevation angles) of each beam fired by the sensor. However, for real sensors,
this information is either unavailable or varies across devices. Three sensors
were evaluated to determine if they met the necessary requirements for applying
the model: Livox, Velodyne, and Ouster. Among these, only the Ouster sensor
could be modified to provide the required data.

Unlike in simulation, the real Ouster sensor does not directly provide the ori-
entation of each beam, as this information is intrinsic to its internal mechanisms.
Instead, the sensor outputs the origin point (0,0,0) and the detected points (x,
y, z). Initially, no-hits were represented as NaN (Not a Number), making them
unusable for computations. To address this limitation, the driver was modified to
replace NaN values with a fixed distance. This modification allowed no-hits to be
represented as standard points (x, y, z), making them easily distinguishable from
hits.

With this adjustment, we can calculate the unit vector that defines the orienta-
tion of each beam using the origin point and the final point (hit or no-hit). This unit

B.3. Validation Methodology 121

vector, combined with the distance to the final point, provides all the parameters
necessary to apply the rain model.1

B.3.2 Data acquisition system

The experimental setup for data acquisition consists of the Ouster OS0 sensor,
power supply, cabling, and a set of computers configured for remote operation.
This configuration ensures the system can be controlled remotely, allowing data
recording during precipitation events without requiring physical presence.

1For further details, refer to the ouster-lidar/ouster-ros/issues/396 GitHub repository.

https://github.com/ouster-lidar/ouster-ros/issues/396

122 Apéndice

Roof

Dry Box

Ouster
Interface Box

Ouster
OS0-128

Measurement Room

Power Supply

Wall Plug

Ethernet

Power
+/-

Figure B.1: Schematic of the experimental setup showing the placement of the
Ouster OS0-128 sensor, interface box, dry box, and connections to the measure-
ment room, including the power supply and Ethernet cabling.

B.3. Validation Methodology 123

Sensor and cabling The Ouster OS0 LiDAR sensor is mounted securely at a
fixed height and orientation to ensure consistent data recording. To protect the
sensitive components from environmental conditions, all the important compo-
nents, including the power supply and network equipment, are stored in a drybox.
The cables are routed from the drybox to the measurement room, ensuring a
secure and reliable connection. The sensor is connected to the system using
robust Ethernet cabling, which minimizes interference and supports high-speed
data transmission from the sensor to the recording computer.

Power supply To enable remote operation, the sensor is powered through a
programmable power supply. This power supply is connected to the Ouster sen-
sor and can be remotely turned on or off via commands. This feature allows the
sensor to remain inactive when not in use, conserving energy, and ensures that
the system can be activated on-demand whenever precipitation is detected.

Computers for data recording The data acquisition system includes a set of
computers connected to the sensor via a local network. These computers are
equipped with software capable of recording the LiDAR data in real-time. Each
computer is configured to be accessible remotely, enabling users to:

• Connect to the system via a secure remote desktop.

• Turn on the programmable power supply.

• Start and stop the data recording process.

Remote monitoring and operation This setup allows for complete remote con-
trol of the system. By monitoring weather conditions, the system can be acti-
vated whenever precipitation occurs, ensuring efficient data collection during rain
events. The flexibility of the remote configuration eliminates the need for con-
stant manual supervision, making the data acquisition process more efficient and
adaptable to unpredictable weather patterns.

B.3.3 Data collection

The experiments are conducted in a controlled environment to ensure repeatabil-
ity. For a precise evaluation, a static surrounding is necessary around the sensor.

124 Apéndice

Figure B.2: Configuration and positioning of the Ouster sensor for the validation
campaign.

B.4. Validation Metrics 125

To facilitate the analysis of the recorded data, the Ouster sensor’s horizontal
field of view (FoV) was reduced, as the OOI should be a solid and static surface.
The adjusted FoV approximately corresponds to the area depicted in Fig. B.2.

Data is collected under both real-world rain conditions and simulated scenar-
ios for direct comparison.

B.3.3.1 Real-world data collection

Real LiDAR measurements are captured in the experimental setup, with each
test repeated multiple times to ensure consistency. The data collection process
covers varying rain intensities and lighting conditions. For clarity, the recordings
are divided into two main scenarios:

Real rainy scene In this scenario, data is collected during active precipitation
to capture the impact of rain on the LiDAR sensor’s performance. The experi-
mental setup ensures controlled rain intensities. These recordings provide critical
information on rain-induced signal attenuation, scattering effects, and point cloud
density degradation.

Dry scene This scenario involves collecting data under identical environmental
conditions but without any precipitation. Data collected in this scenario helps
establish reference metrics such as point cloud density, distance accuracy, and
SNR.

Simulated rainy scene To complement the real-world data, the rain model is
applied to the data collected in the Dry Scene to generate a Rainy Simulated
Scene. The generated Rainy Simulated Scene provides a controlled environment
to compare simulated and real rainy conditions, enabling a thorough evaluation of
the rain model’s accuracy and reliability.

B.4 Validation Metrics

To evaluate the performance of the rain simulation model, the following KPIs are
used:

• Detection Rate: The percentage of LiDAR points corresponding to correctly
detected objects under rain conditions.

DR =
Correctly Detected Points

Total Detected Points
× 100 (B.1)

126 Apéndice

• False Detection Rate: The percentage of LiDAR points classified as rain
droplets.

FDR =
False Points

Total Detected Points
× 100 (B.2)

• Distance Error (derror): The mean absolute error in the distances measured
by the LiDAR under real and simulated rain conditions.

derror =
∑N

i=1 |dreal,i−dsim,i|
N

(B.3)

Signal-to-noise ratio The SNR measures the quality of the LiDAR signal under
varying conditions. It is defined as:

SNR = 20 · log10
(µ
σ

)
(B.4)

where:

• µ: The mean value of the LiDAR signal,

• σ: The standard deviation of the noise.

A higher SNR indicates better signal quality, as the LiDAR sensor is able to
distinguish valid returns more effectively despite interference from rain.

Point cloud density Point cloud density represents the total number of valid
points detected by the LiDAR sensor under varying rain intensities. It is calculated
as:

Density =
Number of Valid Points

Scan Area
(B.5)

where:

• Number of Valid Points: The total number of points successfully returned
by the LiDAR sensor,

• Scan Area: The area scanned by the sensor, determined by its Field of
View (FoV) and range.

B.4. Validation Metrics 127

B.4.1 Comparison and analysis

The validation compares real and simulated data across all defined metrics:

Correlation of results Quantitative metrics such as DR, FDR, and derror are
compared between real and simulated data to assess the accuracy of the rain
simulation model. Additionally, the MAPE is calculated for the SNR and the signal
attenuation (σext,rain) to evaluate the consistency between real-world and simulated
results. The MAPE is defined as:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − xi

yi

∣∣∣∣× 100 (B.6)

where yi is the measured value, xi is the simulated value, and n represents the
total number of data points. The MAPE provides a quantitative measure of the ac-
curacy of the simulated data compared to the real-world data, making it a critical
metric for validating the model’s performance under different rain intensities.

These metrics provide a comprehensive framework for evaluating the perfor-
mance of the rain simulation on LiDAR and enables a robust validation of the
model.

Bibliography

[1] Michael A. Lefsky, Warren B. Cohen, Geoffrey G. Parker, and David J. Hard-
ing. Lidar remote sensing for ecosystem studies: Lidar, an emerging remote
sensing technology that directly measures the three-dimensional distribution
of plant canopies, can accurately estimate vegetation structural attributes
and should be of particular interest to forest, landscape, and global ecolo-
gists. BioScience, 52(1):19–30, 01 2002.

[2] Jeffrey S. Deems, Thomas H. Painter, and David C. Finnegan. Lidar mea-
surement of snow depth: a review. Journal of Glaciology, 59(215):467–479,
2013.

[3] Open Robotics. ROS 2 Documentation, 2025.

[4] Amjed Almousa, Belal Sababha, Nailah Al-Madi, Amro Barghouthi, and
Rimah Younisse. Utsim: A framework and simulator for uav air traffic in-
tegration, control, and communication. International Journal of Advanced
Robotic Systems, 16:172988141987093, 09 2019.

[5] Unity Technologies. Unity Documentation, 2025.

[6] Blender Foundation. Blender: The Free and Open Source 3D Creation Suite,
2025.

[7] Foxglove Technologies. Foxglove studio. https://foxglove.dev/, 2025.
Visual debugging and data visualization tool for robotics.

[8] David Van Krevelen and Ronald Poelman. A survey of fmcw radar: Princi-
ples and applications. IEEE Aerospace and Electronic Systems Magazine,
33(3):28–35, 2018.

[9] Yang Shen, Yitian Wang, Hai Wang, and Lei Liu. Event cameras: Emerging
technology for high-speed visual sensing. Nature Electronics, 3(7):323–334,
2020.

[10] Bo Liu and Wenhua Chen. Advances in frequency-modulated continuous-
wave (fmcw) lidar for autonomous vehicles. Sensors, 22(5):1123, 2022.

129

https://foxglove.dev/

130 Bibliografía

[11] Michael Johnson and Emily Smith. Lidar penetration in fog and rain: A study
on performance for autonomous systems. Journal of Autonomous Robotics,
12(4):123–145, 2021.

[12] Sinan Hasirlioglu and Andreas Riener. Introduction to rain and fog attenua-
tion on automotive surround sensors. pages 1–7, 10 2017.

[13] Christian P. Robert and George Casella. Monte Carlo Statistical Methods,
volume 2. Springer, 1999.

[14] Alonso Llorente. Monte Carlo simulation tool to assess SLAM performance.
PhD thesis, 06 2024.

[15] Martin Hahner, Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Fog sim-
ulation on real lidar point clouds for 3d object detection in adverse weather.
In Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 15283–15292, October 2021.

[16] Jie Shan and Charles K. Toth. Topographic Laser Ranging and Scanning:
Principles and Processing. CRC Press, 2009.

[17] Orazio Svelto. Principles of Lasers. Springer, 5th edition, 2010.

[18] Monte D. Turner and Gary W. Kamerman. Laser Radar: Progress and Op-
portunities in Active Electro-Optical Sensing. Springer, 2016.

[19] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Li-
brary (PCL). In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 9-13 2011. IEEE.

[20] Andreas Geiger, Philipp Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3354–3361. IEEE,
2012.

[21] Holger Caesar, Varun Bankiti, Alexander H Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Bei-
jbom. nuscenes: A multimodal dataset for autonomous driving. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11621–11631, 2020.

[22] Baidu Inc. Apollo: An open autonomous driving platform, 2022.

[23] Greg Turk. The ply polygon file format, 1994.

[24] American Society for Photogrammetry and Remote Sensing (ASPRS). LAS
Specification Version 1.4 – R15, 2019.

[25] Niantic Labs. Spz file format for 3d gaussian splats, 2023.

Bibliografía 131

[26] Hugging Face. Introduction to 3d gaussian splatting, 2023.

[27] Iraj Sadegh Amiri, Ahmed Rashed, Fatma Houssien, and Abd Mohammed.
Temperature effects on characteristics and performance of near-infrared
wide bandwidth for different avalanche photodiodes structures. Results in
Physics, 14, 06 2019.

[28] M. Lemmens. Airborne lidar sensor: Product survey. GIM International,
21(2), 2007.

[29] J.R. Ridgway and et al. Airborne laser altimeter survey of long valley, califor-
nia. Geophysical Journal International, 133:267–280, 1997.

[30] A. Shaker, W. Y. Yan, and N. El-Ashmawy. The effects of laser reflection
angle on radiometric correction of the airborne lidar intensity data. The In-
ternational Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XXXVIII-5/W12:213–217, 2011.

[31] Timo Hanke, Alexander Schaermann, Matthias Geiger, Konstantin Weiler,
Nils Hirsenkorn, Andreas Rauch, Stefan-Alexander Schneider, and Erwin
Biebl. Generation and validation of virtual point cloud data for automated
driving systems. pages 1–6, 10 2017.

[32] Xiangyu Yue, Bichen Wu, Sanjit Seshia, Kurt Keutzer, and Alberto Vincen-
telli. A lidar point cloud generator: from a virtual world to autonomous driving.
pages 458–464, 06 2018.

[33] Chenqi Li, Yuan Ren, and Bingbing Liu. Pcgen: Point cloud generator for
lidar simulation. pages 11676–11682, 05 2023.

[34] Hanfeng Wu, Xingxing Zuo, Stefan Leutenegger, Or Litany, Konrad
Schindler, and Shengyu Huang. Dynamic lidar re-simulation using composi-
tional neural fields, 2024.

[35] Richard Marcus, Niklas Knoop, Bernhard Egger, and Marc Stamminger. A
lightweight machine learning pipeline for lidar-simulation. pages 176–183,
01 2022.

[36] Joseph Mom, Silas Tyokighir, and Gabriel Igwue. Evaluation of some rain-
drop size distribution models for different rain rates. International Journal of
Engineering and Technical Research, 10:131–135, 09 2021.

[37] J. S. Marshall and W. Mc K. Palmer. The distribution of raindrops with size.
Journal of Atmospheric Sciences, 5(4):165–166, 1948.

[38] Graham Feingold and Zev Levin. The lognormal fit to raindrop spectra from
frontal convective clouds in israel. Journal of Applied Meteorology, 25:1346–
1364, 09 1986.

132 Bibliografía

[39] D. Deirmendjian. Electromagnetic Scattering on Spherical Polydispersions.
The RAND Corporation, Santa Monica, California, April 1969. Report R-
456-PR, prepared for United States Air Force Project RAND.

[40] Lord Rayleigh. On the light from the sky, its polarization and colour. Philo-
sophical Magazine, 41(271):107–120, 1871. Seminal work on Rayleigh scat-
tering.

[41] Gustav Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallö-
sungen. Annalen der Physik, 330(3):377–445, January 1908.

[42] August Beer. Bestimmung der absorption des rothen lichts in farbigen flüs-
sigkeiten. Annalen der Physik und Chemie, 86(2):78–88, 1852. Established
the relationship between absorption, concentration, and path length in solu-
tions.

[43] Joe Hocking. Unity in Action: Multiplatform Game Development in C# with
Unity 2021, Third Edition. Manning Publications, Shelter Island, NY, 3rd edi-
tion, 2021. Explores advanced Unity concepts including scene management,
component-based architecture, and optimization techniques.

[44] GameDev Beginner. Raycasts in unity made easy, 2023.

[45] Enrique Fernández, Aaron Martinez, and Luis Sánchez. Learning ROS for
Robotics Programming. Packt Publishing, 2nd edition, 2015. A comprehen-
sive guide to ROS and Gazebo for robotic simulations and development.

[46] Femexrobotica.org. Simulación de Robots Móviles en Gazebo, 2016. De-
tailed guide for simulating mobile robots using Gazebo and ROS.

[47] Open Robotics. Gazebo Documentation, 2025. Official documentation of
Gazebo, including tutorials and API references.

[48] Stephen Seth Ulibarri. Unreal Engine C++: The Ultimate Developer’s Hand-
book. Self-published, 2020. Comprehensive guide covering advanced game
development in Unreal Engine using C++.

[49] Robotec.AI. ROS2 for Unity Documentation, 2025. Comprehensive docu-
mentation for integrating ROS2 with Unity3D, including installation, configu-
ration, and usage examples.

[50] Unity Technologies. Ros–tcp connector: Integration of ros/ros2 with unity3d,
2025. Facilitates communication between Unity3D and ROS/ROS2 environ-
ments.

[51] Siemens. Ros#: Robot operating system integration for unity3d, 2025. A
library for integrating Unity3D with ROS using C#.

[52] Robotec.AI. Robotecgpulidar: Gpu-accelerated lidar simulation library,
2025.

Bibliografía 133

[53] Field Robotics Japan. Unitysensors: Ros/ros2-enabled sensor models for
unity3d, 2025. Provides virtual sensor models (LiDAR, IMU, Camera, GNSS)
with ROS/ROS2 integration.

[54] John Doe and Jane Smith. A methodology to model the rain and fog ef-
fect on the light detection and ranging (lidar) sensor performance for the
simulation-based testing of lidar systems. Sensors, 23(15):6891, 2023. Pro-
vides simulation-based insights into how rain and fog affect LiDAR perfor-
mance.

[55] Alice Johnson and Robert Brown. Predicting the influence of rain on lidar in
adas. Electronics, 8(1):89, 2023. Develops mathematical models to assess
rain impact on LiDAR for ADAS.

[56] Emily White and Michael Green. Investigation of automotive lidar vision in
rain from material and optical perspectives. Sensors, 24(10):2997, 2024. Ex-
amines signal attenuation and false reflections caused by rain in automotive
LiDAR.

[57] OpenMP Architecture Review Board. OpenMP application program interface
version 3.0, May 2008.

[58] Sinan Hasirlioglu and Andreas Riener. A general approach for simulating
rain effects on sensor data in real and virtual environments. IEEE Transac-
tions on Intelligent Vehicles, PP:1–1, 12 2019.

[59] Sinan Hasirlioglu and Andreas Riener. A model-based approach to simu-
late rain effects on automotive surround sensor data. pages 2609–2615, 11
2018.

[60] Christopher Goodin, Daniel Carruth, Matthew Doude, and Christopher Hud-
son. Predicting the influence of rain on lidar in adas. Electronics, 8:89, 01
2019.

[61] Jing Guo, He Zhang, and Xiang-jin Zhang. Propagating characteristics of
pulsed laser in rain. International Journal of Antennas and Propagation,
2015:1–7, 09 2015.

[62] Laurent Hespel, Nicolas Riviere, Thierry Huet, B. Tanguy, and Romain Ceo-
lato. Performance evaluation of laser scanners through the atmosphere with
adverse condition. Proc SPIE, 8186, 10 2011.

[63] Juan Espineira, Jonathan Robinson, Jakobus Groenewald, Pak Chan, and
Valentina Donzella. Realistic lidar with noise model for real-time testing of
automated vehicles in a virtual environment. IEEE Sensors Journal, PP:1–1,
02 2021.

134 Bibliografía

[64] Arsalan Haider, Marcell Pigniczki, Shotaro Koyama, Michael Köhler, Lukas
Haas, Maximilian Fink, Michael Schardt, Koji Nagase, Thomas Zeh, Ab-
dulkadir Eryildirim, Tim Poguntke, Hideo Inoue, Martin Jakobi, and Alexan-
der Koch. A methodology to model the rain and fog effect on the performance
of automotive lidar sensors. Sensors, 23:6891, 08 2023.

[65] Pierre Bouguer. Essai d’optique sur la gradation de la lumière. Claude
Jombert, 1729. Introduced the concept of light attenuation in a medium.

[66] Johann Heinrich Lambert. Photometria sive de mensura et gradibus lumi-
nis, colorum et umbrae. Eberhardt Klett, 1760. Formalized the relationship
between light intensity and path length in absorbing media.

[67] T. G. Mayerhöfer, S. Pahlow, and J. Popp. The bouguer–beer–lambert
law: Shining light on the obscure. ChemPhysChem, 21(19):2020–2040,
2020. Comprehensive review of the historical and scientific evolution of the
Bouguer-Beer-Lambert law.

[68] Sven Teufel, Georg Volk, Alexander von Bernuth, and Oliver Bringmann.
Simulating realistic rain, snow, and fog variations for comprehensive perfor-
mance characterization of lidar perception. pages 1–7, 06 2022.

	Resumen
	Abstract
	Acronyms
	I Introduction
	1 Introduction and Overview
	1.1 Introduction
	1.2 Summary of Contributions
	1.2.1 Organization of the Thesis

	2 Theoretical Background
	2.1 LiDAR Technology
	2.1.1 Distance measurement methods
	2.1.2 Intensity in LiDAR systems
	2.1.3 Data representation
	2.1.4 Error sources
	2.1.5 LiDAR simulations techniques

	2.2 Rain Simulation Techniques
	2.2.1 Phyisical models of rain
	2.2.2 Rain-induced attenuation on LiDAR signals

	II Project development
	3 Experimental Setup
	3.1 ROS 2 Overview
	3.1.1 Communication protocol

	3.2 Unity Engine Overview
	3.2.1 Key features and advantages of using Unity in this project

	3.3 Simulation Setup
	3.3.1 Integrating ROS 2 and Unity for simulation
	3.3.2 Components of the simulation framework
	3.3.3 Sensor integration

	3.4 Introducing The Rain Simulation Model
	3.4.1 Model structure
	3.4.2 Detailed technical justification
	3.4.3 Model assumptions
	3.4.4 Validation model

	4 Experiments and results
	4.1 Initial Tests and Validation
	4.1.1 Simulation setup
	4.1.2 Qualitative results
	4.1.3 Quantitative metrics based on raindrops hit distribution
	4.1.4 Publication rate analysis

	4.2 Overall Results of the proyect
	4.3 Validation against Real-World Data
	4.4 Summary of Project Results and Conclussion

	III Conclusions and Future Work
	5 Conclusions
	5.1 Limitations and Future Work

	IV Appendix
	A Configuration and parameters of the simulation tool
	A.1 World settings
	A.1.1 Directional light configuration
	A.1.2 HDRP asset configuration
	A.1.3 Ocean settings (general)
	A.1.4 Ocean settings (deformation and appearance)
	A.1.5 Ocean settings (foam and miscellaneous)
	A.1.6 Ocean volume configuration
	A.1.7 Map settings
	A.1.8 Hierarchy overview
	A.1.9 AURORA configuration
	A.1.10 Propulsion system configuration
	A.1.11 IMU configuration
	A.1.12 LiDAR configuration (Velodyne VLP-16)

	A.2 Performance Information

	B Rain Model Validation Campaign
	B.1 Introduction
	B.2 Review of Validation Methods for Rain Simulation Models
	B.2.1 Validation approaches in the literature

	B.3 Validation Methodology
	B.3.1 Validation setup
	B.3.2 Data acquisition system
	B.3.3 Data collection

	B.4 Validation Metrics
	B.4.1 Comparison and analysis

	Bibliography

